Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage (original) (raw)

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  2. Deshaies, R.J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).
    Article CAS Google Scholar
  3. Jackson, P. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).
    Article CAS Google Scholar
  4. Furukawa, M., Ohta, T. & Xiong, Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J. Biol. Chem. 277, 15758–15765 (2002).
    Article CAS Google Scholar
  5. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).
    Article CAS Google Scholar
  6. Skowyra, D., Craig, K., Tyers, M., Elledge, S.J. & Harper, J.W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).
    Article CAS Google Scholar
  7. Feldman, R.M.R., Correll, C.C., Kaplan, K.B. & Deshaies, R.J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).
    Article CAS Google Scholar
  8. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F-box–Skp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).
    Article CAS Google Scholar
  9. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).
    Article CAS Google Scholar
  10. Zhang, J.G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl Acad. Sci. USA 96, 2071–2076 (1999).
    Article CAS Google Scholar
  11. Kamura, T. et al. Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J. Biol. Chem. 276, 29748–29753 (2001).
    Article CAS Google Scholar
  12. Stebbins, C.E., Kaelin, W.G., Jr. & Pavletich, N.P. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).
    Article CAS Google Scholar
  13. Furukawa, M., He, Y.J., Borchers, C. & Xiong, Y. Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nature Cell Biol. 5, 1001–1007 (2003).
    Article CAS Google Scholar
  14. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D.A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).
    Article CAS Google Scholar
  15. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).
    Article CAS Google Scholar
  16. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).
    Article CAS Google Scholar
  17. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475–3484 (2000).
    Article CAS Google Scholar
  18. Zhong, W., Feng, H., Santiago, F.E. & Kipreos, E.T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885–889 (2003).
    Article CAS Google Scholar
  19. Li, B., Ruiz, J.C. & Chun, K.T. CUL-4A is critical for early embryonic development. Mol. Cell. Biol. 22, 4997–5005 (2002).
    Article CAS Google Scholar
  20. Chen, L.-C. et al. The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res. 58, 3677–3683 (1998).
    CAS PubMed Google Scholar
  21. Yasui, K. et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35, 1476–1484 (2002).
    Article CAS Google Scholar
  22. Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol. 5, 1008–1015 (2003).
    Article CAS Google Scholar
  23. Zhang, Y. et al. CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO J. 22, 6057–6067 (2003).
    Article CAS Google Scholar
  24. Andrejeva, J., Poole, E., Young, D.F., Goodbourn, S. & Randall, R.E. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J. Virol. 76, 11379–11386 (2002).
    Article CAS Google Scholar
  25. Ulane, C.M. & Horvath, C.M. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304, 160–166 (2002).
    Article CAS Google Scholar
  26. Ulane, C.M., Rodriguez, J.J., Parisien, J.P. & Horvath, C.M. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J. Virol. 77, 6385–6393 (2003).
    Article CAS Google Scholar
  27. Wertz, I.E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).
    Article CAS Google Scholar
  28. Shiyanov, P., Nag, A. & Raychaudhuri, P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J. Biol. Chem. 274, 35309–35312 (1999).
    Article CAS Google Scholar
  29. Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 (2002).
    Article CAS Google Scholar
  30. Zheng, J. et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10, 1519–1526 (2002).
    Article CAS Google Scholar
  31. Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854–30858 (2003).
    Article CAS Google Scholar
  32. Keeney, S., Chang, G.J. & Linn, S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum. J. Biol. Chem. 268, 21293–21300 (1993).
    CAS PubMed Google Scholar
  33. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).
    Article CAS Google Scholar
  34. Nag, A., Bondar, T., Shiv, S. & Raychaudhuri, P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol. Cell Biol. 21, 6738–6747 (2001).
    Article CAS Google Scholar
  35. Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564–567 (1988).
    Article CAS Google Scholar
  36. Lin, G.Y., Paterson, R.G., Richardson, C.D. & Lamb, R.A. The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249, 189–200 (1998).
    Article CAS Google Scholar
  37. Ohta, T., Michel, J.J., Schottelius, A.J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).
    Article CAS Google Scholar

Download references