MAP kinase dynamics in response to pheromones in budding yeast (original) (raw)

References

  1. Cobb, M. H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479–500 (1999).
    Article CAS Google Scholar
  2. Whitmarsh, A. J. & Davis, R. J. Structural organization of MAP-kinase signalling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485 (1998).
    Article CAS Google Scholar
  3. Schaeffer, H. J. & Weber, M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell Biol. 19, 2435–2444 (1999).
    Article CAS Google Scholar
  4. Elion, E. A. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581 (2000).
    Article CAS Google Scholar
  5. Dohlmanm, H. & Thorner, J. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001).
    Article Google Scholar
  6. Whiteway, M. S. et al. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 269, 1572–1575 (1995).
    Article CAS Google Scholar
  7. Leeuw, T. et al. Interaction of a G-protein beta-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391, 191–195 (1998).
    Article CAS Google Scholar
  8. Choi, K. Y., Satterberg, B., Lyons, D. M. & Elion, E. A. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512 (1994).
    Article CAS Google Scholar
  9. Kranz, J. E., Satterberg, B. & Elion, E. A. The MAP kinase Fus3 associates with and phosphorylates the upstream signalling component Ste5. Genes Dev. 8, 313–327 (1994).
    Article CAS Google Scholar
  10. Marcus, S., Polverino, A., Barr, M. & Wigler, M. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc. Natl Acad. Sci. USA 91, 7762–7766 (1994).
    Article CAS Google Scholar
  11. Cook, J. G., Bardwell, L., Kron, S. J. & Thorner, J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10, 2831–2848 (1996).
    Article CAS Google Scholar
  12. Tedford, K., Kim, S., Sa, D., Stevens, K. & Tyers, M. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7, 228–238 (1997).
    Article CAS Google Scholar
  13. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264–1300 (1998).
    CAS PubMed PubMed Central Google Scholar
  14. Levin, D. E. & Errede, B. The proliferation of MAP kinase signalling pathways in yeast. Curr. Opin. Cell Biol. 7, 197–202 (1995).
    Article CAS Google Scholar
  15. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).
    Article CAS Google Scholar
  16. Madhani, H. D. & Fink, G. R. The riddle of MAP kinase signalling specificity. Trends Genet. 14, 151–155 (1998).
    Article CAS Google Scholar
  17. Ferrigno, P., Posas, F., Koepp, D., Saito, H. & Silver, P. A. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17, 5606–5614 (1998).
    Article CAS Google Scholar
  18. Peter, M., Neiman, A. M., Park, H. O., vanLohuizen, M. & Herskowitz, I. Functional Analysis of the interaction between the small GTP-binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15, 7046–7059 (1996).
    Article CAS Google Scholar
  19. Leberer, E. et al. Functional characterization of the Cdc42p-binding domain of yeast Ste20p protein kinase. EMBO J. 16, 83–97 (1997).
    Article CAS Google Scholar
  20. Pryciak, P. M. & Huntress, F. A. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the G beta gamma complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12, 2684–2697 (1998).
    Article CAS Google Scholar
  21. Mahanty, S. K., Wang, Y., Farley, F. W. & Elion, E. A. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 98, 501–512 (1999).
    Article CAS Google Scholar
  22. Choi, K. Y., Kranz, J. E., Mahanty, S. K., Park, K. S. & Elion, E. A. Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity. Mol. Biol. Cell 10, 1553–1568 (1999).
    Article CAS Google Scholar
  23. Khokhlatchev, A. V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615 (1998).
    Article CAS Google Scholar
  24. Adachi, M., Fukuda, M. & Nishida, E. Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18, 5347–5358 (1999).
    Article CAS Google Scholar
  25. Gaits, F., Degols, G., Shiozaki, K. & Russell, P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12, 1464–1473 (1998).
    Article CAS Google Scholar
  26. Mattison, C. P. & Ota, I. M. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev. 14, 1229–1235 (2000).
    CAS PubMed PubMed Central Google Scholar
  27. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908 (1997).
    Article CAS Google Scholar
  28. Inouye, C., Dhillon, N., Durfee, T., Zambryski, P. C. & Thorner, J. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: application of a differential interaction trap assay for examining protein-protein interactions. Genetics 147, 479–492 (1997).
    CAS PubMed PubMed Central Google Scholar
  29. White, J. & Stelzer, E. Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol. 9, 61–65 (1999).
    Article CAS Google Scholar
  30. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
    Article CAS Google Scholar
  31. Blondel, M. et al. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev. 13, 2284–2300 (1999).
    Article CAS Google Scholar
  32. Oehlen, B. & Cross, F. R. Signal transduction in the budding yeast Saccharomyces cerevisiae. Curr. Opin. Cell Biol. 6, 836–841 (1994).
    Article CAS Google Scholar
  33. Gartner, A., Nasmyth, K. & Ammerer, G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6, 1280–1292 (1992).
    Article CAS Google Scholar
  34. van Drogen, F., O'Rourke, S., Stucke, V., Jaquenoud, M. & Peter, M. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signalling in vivo. Curr. Biol. 10, 630–639 (2000).
    Article CAS Google Scholar
  35. Doi, K. et al. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J. 13, 61–70 (1994).
    Article CAS Google Scholar
  36. Garrison, T. R. et al. Feedback phosphorylation of an RGS protein by MAP kinase in yeast. J. Biol. Chem. 274, 36387–36391 (1999).
    Article CAS Google Scholar
  37. Sharrocks, A. D., Yang, S. H. & Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25, 448–453 (2000).
    Article CAS Google Scholar
  38. Sette, C., Inouye, C. J., Stroschein, S. L., Iaquinta, P. J. & Thorner, J. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol. Biol. Cell 11, 4033–4049 (2000).
    Article CAS Google Scholar
  39. Feng, Y., Song, L. Y., Kincaid, E., Mahanty, S. K. & Elion, E. A. Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr. Biol. 8, 267–278 (1998).
    Article CAS Google Scholar
  40. Moskow, J. J., Gladfelter, A. S., Lamson, R. E., Pryciak, P. M. & Lew, D. J. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. Mol. Cell Biol. 20, 7559–7571 (2000).
    Article CAS Google Scholar
  41. Reiser, V., Salah, S. M. & Ammerer, G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biol. 2, 620–627 (2000).
    Article CAS Google Scholar
  42. Raitt, D. C., Posas, F. & Saito, H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 19, 4623–4631 (2000).
    Article CAS Google Scholar
  43. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991)).
    Google Scholar
  44. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene and Wiley-Interscience, New York, 1991).
    Google Scholar
  45. Jaquenoud, M., Gulli, M. P., Peter, K. & Peter, M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17, 5360–5373 (1998).
    Article CAS Google Scholar
  46. Valtz, N. & Peter, M. Functional analysis of FAR1 in yeast. Methods Enzymol. 283, 350–365 (1997).
    Article CAS Google Scholar
  47. Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982 (1997).
    Article CAS Google Scholar
  48. Gulli, M. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).
    Article CAS Google Scholar
  49. Ellenberg, J. & Lippincott-Schwartz, J. in Cells: A Laboratory Manual (eds Spector, D., Goldman, R. & Leinwand, L.) 79.1–79.23 (Cold Spring Harbor Laboratory Press, 1998).
    Google Scholar

Download references