DNA replication timing: random thoughts about origin firing (original) (raw)

References

  1. Jacob, F. & Brenner, S. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances. Acad. Sci. 256, 298–300 (1963).
    CAS PubMed Google Scholar
  2. Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771 (1980).
    Article CAS Google Scholar
  3. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).
    Article CAS Google Scholar
  4. Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).
    Article CAS Google Scholar
  5. DePamphilis, M. L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21, 5–16 (1999).
    Article CAS Google Scholar
  6. Hyrien, O., Marheineke, K. & Goldar, A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25, 116–125 (2003).
    Article CAS Google Scholar
  7. Dijkwel, P. A. & Hamlin, J. L. The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol. Cell Biol. 15, 3023–3031 (1995).
    Article CAS Google Scholar
  8. Patel, P. K., Arcangioli, B., Baker, S. P., Bensimon, A. & Rhind, N. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 17, 308–316 (2006).
    Article CAS Google Scholar
  9. Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 300, 1133–1142 (2000).
    Article CAS Google Scholar
  10. Fangman, W. L. & Brewer, B. J. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell Biol. 7, 375–402 (1991).
    Article CAS Google Scholar
  11. Newlon, C. S. et al. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129, 343–357 (1991).
    CAS PubMed PubMed Central Google Scholar
  12. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).
    Article CAS Google Scholar
  13. Dubey, D. D., Zhu, J., Carlson, D. L., Sharma, K. & Huberman, J. A. Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J. 13, 3638–3647 (1994).
    Article CAS Google Scholar
  14. Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell Biol. 22, 3053–3065 (2002).
    Article CAS Google Scholar
  15. Drouin, R., Lemieux, N. & Richer, C. L. Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma 99, 273–280 (1990).
    Article CAS Google Scholar
  16. Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci. 117, 5353–5365 (2004).
    Article CAS Google Scholar
  17. Taljanidisz, J., Popowski, J. & Sarkar, N. Temporal order of gene replication in Chinese hamster ovary cells. Mol. Cell Biol. 9, 2881–2889 (1989).
    Article CAS Google Scholar
  18. MacAlpine, D. M., Rodriguez, H.K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).
    Article CAS Google Scholar
  19. Woodfine, K. et al. Replication timing of human chromosome 6. Cell Cycle 4, 172–176 (2005).
    Article CAS Google Scholar
  20. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).
    Article CAS Google Scholar
  21. Donaldson, A. D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet. 21, 444–449 (2005).
    Article CAS Google Scholar
  22. Laskey, R. A. Chromosome replication in early development of Xenopus laevis. J. Embryol. Exp. Morphol. 89, 285–296 (1985).
    PubMed Google Scholar
  23. Herrick, J., Jun, S., Bechhoefer, J. & Bensimon, A. Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol. 320, 741–750 (2002).
    Article CAS Google Scholar
  24. Marheineke, K. & Hyrien, O. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem. 276, 17092–17100 (2001).
    Article CAS Google Scholar
  25. Lucas, I., Chevrier-Miller, M., Sogo, J. M. & Hyrien, O. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J. Mol. Biol. 296, 769–786 (2000).
    Article CAS Google Scholar
  26. Jun, S., Herrick, J., Bensimon, A. & Bechhoefer, J. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle 3, 223–229 (2004).
    Article CAS Google Scholar
  27. Takeda, D. Y. & Dutta, A. DNA replication and progression through S phase. Oncogene 24, 2827–2843 (2005).
    Article CAS Google Scholar
  28. Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819–2830 (1996).
    Article CAS Google Scholar
  29. Edwards, M. C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002).
    Article CAS Google Scholar
  30. Diaz-Martinez, L. & Clarke, D. J. Self-regulating model for control of replication origin firing in budding yeast. Cell Cycle 2, 576–578 (2003).
    Article CAS Google Scholar
  31. Shechter, D. & Gautier, J. ATM and ATR Check in on origins: a dynamic model for origin selection and activation. Cell Cycle 4, 235–238 (2005).
    Article CAS Google Scholar
  32. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).
    Article CAS Google Scholar
  33. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071–28081 (2004).
    Article CAS Google Scholar
  34. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).
    Article CAS Google Scholar
  35. Miao, H., Seiler, J. & Burhans, W. C. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J. Biol. Chem. 278, 4295–4304 (2003).
    Article CAS Google Scholar
  36. Sorensen, C. S., Syljuasen, R. G., Lukas, J. & Bartek, J. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3, 941–945 (2004).
    Article CAS Google Scholar
  37. Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. A yeast origin of replication is activated late in S phase. Cell 65, 507–515 (1991).
    Article CAS Google Scholar
  38. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).
    Article CAS Google Scholar
  39. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).
    Article CAS Google Scholar
  40. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).
    Article CAS Google Scholar

Download references