DNA replication timing: random thoughts about origin firing (original) (raw)
References
Jacob, F. & Brenner, S. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances. Acad. Sci.256, 298–300 (1963). CASPubMed Google Scholar
Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell21, 761–771 (1980). ArticleCAS Google Scholar
Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol.38, 205–223 (1974). ArticleCAS Google Scholar
Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science294, 96–100 (2001). ArticleCAS Google Scholar
DePamphilis, M. L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays21, 5–16 (1999). ArticleCAS Google Scholar
Hyrien, O., Marheineke, K. & Goldar, A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays25, 116–125 (2003). ArticleCAS Google Scholar
Dijkwel, P. A. & Hamlin, J. L. The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol. Cell Biol.15, 3023–3031 (1995). ArticleCAS Google Scholar
Patel, P. K., Arcangioli, B., Baker, S. P., Bensimon, A. & Rhind, N. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell17, 308–316 (2006). ArticleCAS Google Scholar
Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol.300, 1133–1142 (2000). ArticleCAS Google Scholar
Fangman, W. L. & Brewer, B. J. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell Biol.7, 375–402 (1991). ArticleCAS Google Scholar
Newlon, C. S. et al. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics129, 343–357 (1991). CASPubMedPubMed Central Google Scholar
Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science294, 115–121 (2001). ArticleCAS Google Scholar
Dubey, D. D., Zhu, J., Carlson, D. L., Sharma, K. & Huberman, J. A. Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J.13, 3638–3647 (1994). ArticleCAS Google Scholar
Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell Biol.22, 3053–3065 (2002). ArticleCAS Google Scholar
Drouin, R., Lemieux, N. & Richer, C. L. Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma99, 273–280 (1990). ArticleCAS Google Scholar
Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci.117, 5353–5365 (2004). ArticleCAS Google Scholar
Taljanidisz, J., Popowski, J. & Sarkar, N. Temporal order of gene replication in Chinese hamster ovary cells. Mol. Cell Biol.9, 2881–2889 (1989). ArticleCAS Google Scholar
MacAlpine, D. M., Rodriguez, H.K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev.18, 3094–3105 (2004). ArticleCAS Google Scholar
Woodfine, K. et al. Replication timing of human chromosome 6. Cell Cycle4, 172–176 (2005). ArticleCAS Google Scholar
Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet.13, 191–202 (2004). ArticleCAS Google Scholar
Donaldson, A. D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet.21, 444–449 (2005). ArticleCAS Google Scholar
Laskey, R. A. Chromosome replication in early development of Xenopus laevis. J. Embryol. Exp. Morphol.89, 285–296 (1985). PubMed Google Scholar
Herrick, J., Jun, S., Bechhoefer, J. & Bensimon, A. Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol.320, 741–750 (2002). ArticleCAS Google Scholar
Marheineke, K. & Hyrien, O. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem.276, 17092–17100 (2001). ArticleCAS Google Scholar
Lucas, I., Chevrier-Miller, M., Sogo, J. M. & Hyrien, O. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J. Mol. Biol.296, 769–786 (2000). ArticleCAS Google Scholar
Jun, S., Herrick, J., Bensimon, A. & Bechhoefer, J. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle3, 223–229 (2004). ArticleCAS Google Scholar
Takeda, D. Y. & Dutta, A. DNA replication and progression through S phase. Oncogene24, 2827–2843 (2005). ArticleCAS Google Scholar
Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev.10, 2819–2830 (1996). ArticleCAS Google Scholar
Edwards, M. C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem.277, 33049–33057 (2002). ArticleCAS Google Scholar
Diaz-Martinez, L. & Clarke, D. J. Self-regulating model for control of replication origin firing in budding yeast. Cell Cycle2, 576–578 (2003). ArticleCAS Google Scholar
Shechter, D. & Gautier, J. ATM and ATR Check in on origins: a dynamic model for origin selection and activation. Cell Cycle4, 235–238 (2005). ArticleCAS Google Scholar
Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science297, 602–606 (2002). ArticleCAS Google Scholar
Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem.279, 28071–28081 (2004). ArticleCAS Google Scholar
Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol.6, 648–655 (2004). ArticleCAS Google Scholar
Miao, H., Seiler, J. & Burhans, W. C. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J. Biol. Chem.278, 4295–4304 (2003). ArticleCAS Google Scholar
Sorensen, C. S., Syljuasen, R. G., Lukas, J. & Bartek, J. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle3, 941–945 (2004). ArticleCAS Google Scholar
Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. A yeast origin of replication is activated late in S phase. Cell65, 507–515 (1991). ArticleCAS Google Scholar
Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol.14, 377–383 (2002). ArticleCAS Google Scholar
Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell118, 555–566 (2004). ArticleCAS Google Scholar
Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell10, 1223–1233 (2002). ArticleCAS Google Scholar