An α4 integrin–paxillin–Arf-GAP complex restricts Rac activation to the leading edge of migrating cells (original) (raw)
Lauffenburger, D. A. & Horowitz, A. F. Cell migration: a physically integrated molecular process. Cell84, 359–369 (1996). ArticleCAS Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). ArticleCAS Google Scholar
Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell109, 611–623 (2002). ArticleCAS Google Scholar
Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell109, 599–610 (2002). ArticleCAS Google Scholar
Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell106, 489–498 (2001). ArticleCAS Google Scholar
Hall, A. Rho GTPases and the actin cytoskeleton. Science23, 509–514 (1998). Article Google Scholar
Nobes, C. D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol.144, 1235–1244 (1999). ArticleCAS Google Scholar
Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science290, 333–337 (2000). ArticleCAS Google Scholar
Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol.5, 599–609 (2003). ArticleCAS Google Scholar
Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol.160, 375–385 (2003). ArticleCAS Google Scholar
Yang, J. T., Rayburn, H. & Hynes, R. O. Cell adhesion events by alpha4 integrins are essential in placental and cardiac development. Development121, 549–560 (1995). CASPubMed Google Scholar
Hemler, M. E. VLA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu. Rev. Immunol.8, 365–400 (1990). ArticleCAS Google Scholar
Arroyo, A. G., Yang, J. T., Rayburn, H. & Hynes, R. O. Differential requirements for α4 integrins in hematopoiesis. Cell85, 997–1008 (1996). ArticleCAS Google Scholar
Liu, S. et al. Binding of paxillin to α4 integrins modifies integrin-dependent biological responses. Nature402, 676–681 (1999). ArticleCAS Google Scholar
Han, J. et al. Phosphorylation of the integrin α4 cytoplasmic domain regulates paxillin binding. J. Biol. Chem.276, 40903–40909 (2001). ArticleCAS Google Scholar
Han, J., Rose, D. M., Woodside, D. G., Goldfinger, L. E. & Ginsberg, M. H. Integrin α4β1-dependent T cell migration requires both phosphorylation and dephosphorylation of the α4 cytoplasmic domain to regulate the reversible binding of paxillin. J. Biol. Chem.278, 34845–34853 (2003). ArticleCAS Google Scholar
Goldfinger, L. E., Han, J., Kiosses, W. B., Howe, A. K. & Ginsberg, M. H. Spatial restriction of α4 integrin phosphorylation regulates lamellipodial stability and α4β1-dependent cell migration. J. Cell Biol.162, 731–741 (2003). ArticleCAS Google Scholar
Tumbarello, D. A., Brown, M. C. & Turner, C. E. The paxillin LD motifs. FEBS Lett.513, 114–118 (2002). ArticleCAS Google Scholar
Turner, C. E. Paxillin interactions. J. Cell Sci.113, 4139–4140 (2000). CASPubMed Google Scholar
Turner, C. E. Paxillin and focal adhesion signalling. Nature Cell Biol.2, E231–E236 (2000). ArticleCAS Google Scholar
Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII-p130Cas complex. J. Biol. Chem.273, 24479–24484 (1998). ArticleCAS Google Scholar
Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is critical transducer of fibronectin signaling. Mol. Cell. Biol.22, 901–915 (2002). ArticleCAS Google Scholar
Wade, R., Bohl, J. & Vande, P. S. Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase. Oncogene21, 96–107 (2002). ArticleCAS Google Scholar
Nishiya, N., Tachibana, K., Shibanuma, M., Mashimo, J. I. & Nose, K. Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol. Cell. Biol.21, 5332–5345 (2001). ArticleCAS Google Scholar
West, K. A. et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell Biol.154, 161–176 (2001). ArticleCAS Google Scholar
Zhao, Z. S., Manser, E., Loo, T. H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol.20, 6354–6363 (2000). ArticleCAS Google Scholar
Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol.145, 851–863 (1999). ArticleCAS Google Scholar
Song, J., Khachikian, Z., Radhakrishna, H. & Donaldson, J. G. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cell Sci.111, 2257–2267 (1998). CASPubMed Google Scholar
Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J.18, 1480–1491 (1999). ArticleCAS Google Scholar
Santy, L. C. & Casanova, J. E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol.154, 599–610 (2001). ArticleCAS Google Scholar
Liu, S. et al. A fragment of Paxillin binds the alpha 4 integrin cytoplasmic domain (Tail) and selectively inhibits α4-mediated cell migration. J. Biol. Chem.277, 20887–20894 (2002). ArticleCAS Google Scholar
Premont, R. T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl Acad. Sci. USA95, 14082–14087 (1998). ArticleCAS Google Scholar
Boshans, R. L., Szanto, S., Van Aelst, L. & D'Souza-Schorey, C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell. Biol.20, 3685–3694 (2000). ArticleCAS Google Scholar
Radhakrishna, H., Al Awar, O., Khachikian, Z. & Donaldson, J. G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci.112, 855–866 (1999). CASPubMed Google Scholar
Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell9, 1863–1871 (1998). ArticleCAS Google Scholar
Brown, M. C., West, K. A. & Turner, C. E. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol. Biol. Cell13, 1550–1565 (2002). ArticleCAS Google Scholar
Michiels, F. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J. Cell Biol.137, 387–398 (1997). ArticleCAS Google Scholar
Tarricone, C. et al. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature411, 215–219 (2001). ArticleCAS Google Scholar
Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell99, 521–532 (1999). ArticleCAS Google Scholar
Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol.162, 113–124 (2003). ArticleCAS Google Scholar
Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science279, 558–560 (1998). ArticleCAS Google Scholar
Yoshii, S. et al. alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene18, 5680–5690 (1999). ArticleCAS Google Scholar
Fleming, I. N., Gray, A. & Downes, C. P. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem. J.351, 173–182 (2000). ArticleCAS Google Scholar
Chan, B. M. C. et al. Distinct cellular functions mediated by different VLA integrin α subunit cytoplasmic domains. Cell68, 1051–1060 (1992). ArticleCAS Google Scholar
Kil, S. H., Krull, C. E., Cann, G., Clegg, D. & Bronner-Fraser, M. The α4 subunit of integrin is important for neural crest cell migration. Dev. Biol.202, 29–42 (1998). ArticleCAS Google Scholar
Sengbusch, J. K., He, W., Pinco, K. A. & Yang, J. T. Dual functions of α4β1 integrin in epicardial development: initial migration and long-term attachment. J. Cell Biol.157, 873–882 (2002). ArticleCAS Google Scholar
Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J.21, 6791–6800 (2002). ArticleCAS Google Scholar
Dell'Angelica, E. C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol.149, 81–94 (2000). ArticleCAS Google Scholar
Arias-Salgado, E. G. et al. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc. Natl Acad. Sci. USA100, 13298–13302 (2003). ArticleCAS Google Scholar
Yano, H. et al. Roles played by a subset of integrin signaling molecules in cadherin-based cell–cell adhesion. J. Cell Biol.166, 283–295 (2004). ArticleCAS Google Scholar