SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions (original) (raw)
References
Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nature Rev. Mol. Cell Biol.3, 767–778 (2002). ArticleCAS Google Scholar
D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell117, 455–469 (2004). ArticleCASPubMed Google Scholar
Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell117, 471–482 (2004). ArticleCASPubMed Google Scholar
Lehmann, A. R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol.15, 7067–7080 (1995). ArticleCASPubMedPubMed Central Google Scholar
Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem.277, 21585–21591 (2002). ArticleCASPubMed Google Scholar
McDonald, W. H., Pavlova, Y., Yates, J. R. & Boddy, M. N. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5–Smc6 complex. J. Biol. Chem.278, 45460–45467 (2003). ArticleCASPubMed Google Scholar
Boddy, M. N. et al. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol. Cell. Biol.23, 5939–5946 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hazbun, T. R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell12, 1353–1365 (2003). ArticleCASPubMed Google Scholar
Pebernard, S., McDonald, W. H., Pavlova, Y., Yates, I. J. & Boddy, M. N. Nse1, Nse2, and a novel subunit of the Smc5–Smc6 complex, Nse3, play a crucial role in meiosis. Mol. Biol. Cell15, 4866–4876 (2004). ArticleCASPubMedPubMed Central Google Scholar
Verkade, H. M., Bugg, S. J., Lindsay, H. D., Carr, A. M. & O'Connell, M. J. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell10, 2905–2918 (1999). ArticleCASPubMedPubMed Central Google Scholar
Onoda, F. et al. SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair3, 429–439 (2004). ArticleCASPubMed Google Scholar
Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet.36, 617–656 (2002). ArticleCASPubMed Google Scholar
Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev.15, 2809–2821 (2001). CASPubMedPubMed Central Google Scholar
Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and rRepair proteins. Cell118, 699–713 (2004). ArticleCASPubMed Google Scholar
Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol.134, 1349–1363 (1996). ArticleCASPubMed Google Scholar
Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell108, 207–220 (2002). ArticleCASPubMed Google Scholar
Machin, F., Torres-Rosell, J., Jarmuz, A. & Aragon, L. Spindle independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J. Cell Biol.168, 209–219 (2005). ArticleCASPubMedPubMed Central Google Scholar
Torres-Rosell, J., Machin, F., Jarmuz, A. & Aragon, L. Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle3, 496–502 (2004). ArticleCASPubMed Google Scholar
Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev.11, 748–760 (1997). ArticleCASPubMed Google Scholar
Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell95, 419–430 (1998). ArticleCASPubMed Google Scholar
McGlynn, P. & Lloyd, R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell101, 35–45 (2000). ArticleCASPubMed Google Scholar
Collins, I. & Newlon, C. S. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell76, 65–75 (1994). ArticleCASPubMed Google Scholar
Schwacha, A. & Kleckner, N. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell76, 51–63 (1994). ArticleCASPubMed Google Scholar
Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell90, 87–96 (1997). ArticleCASPubMed Google Scholar
Zhu, Q., Pongpech, P. & DiGate, R. J. Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc. Natl Acad. Sc.i USA98, 9766–9771 (2001). ArticleCAS Google Scholar
Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell115, 401–411 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature426, 870–874 (2003). ArticleCASPubMed Google Scholar
Osman, F., Dixon, J., Doe, C. L. & Whitby, M. C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81–Eme1 in meiosis. Mol. Cell12, 761–774 (2003). ArticleCASPubMed Google Scholar
Machin, F. et al. Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr. Biol.14, 125–130 (2004). ArticleCASPubMed Google Scholar
Pearson, C. G., Maddox, P. S., Salmon, E. D. & Bloom, K. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol.152, 1255–1266 (2001). ArticleCASPubMedPubMed Central Google Scholar
Huberman, J. A., Spotila, L. D., Nawotka, K. A., el-Assouli, S. M. & Davis, L. R. The in vivo replication origin of the yeast 2 microns plasmid. Cell51, 473–481 (1987). ArticleCASPubMed Google Scholar
Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3´ end of yeast ribosomal RNA genes. Cell55, 637–643 (1988). ArticleCASPubMed Google Scholar
Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature412, 553–557 (2001). ArticleCASPubMed Google Scholar