CtBP3/BARS drives membrane fission in dynamin-independent transport pathways (original) (raw)
References
Corda, D., Hidalgo Carcedo, C., Bonazzi, M., Luini, A. & Spano, S. Molecular aspects of membrane fission in the secretory pathway. Cell. Mol. Life Sci.59, 1819–1832 (2002). ArticleCAS Google Scholar
Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004). ArticleCAS Google Scholar
Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol.15, 414–422 (2003). ArticleCAS Google Scholar
Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol.143, 1871–1881 (1998). ArticleCAS Google Scholar
Gurunathan, S., David, D. & Gerst, J.E. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J.21, 602–614 (2002). ArticleCAS Google Scholar
Harsay, E. & Schekman, R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol.156, 271–285 (2002). ArticleCAS Google Scholar
Luo, W. & Chang, A. An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast. Mol. Biol. Cell11, 579–592 (2000). ArticleCAS Google Scholar
Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature422, 37–44 (2003). ArticleCAS Google Scholar
McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci.25, 115–120 (2000). ArticleCAS Google Scholar
Schmid, S.L., McNiven, M.A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol.10, 504–512 (1998). ArticleCAS Google Scholar
Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from _trans_-Golgi network. Nature Cell Biol.6, 106–112 (2004). ArticleCAS Google Scholar
Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature402, 429–433 (1999). ArticleCAS Google Scholar
Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell93, 263–275 (1998). ArticleCAS Google Scholar
Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell96, 495–506 (1999). ArticleCAS Google Scholar
Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature426, 563–566 (2003). ArticleCAS Google Scholar
Yang, J.S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol.159, 69–78 (2002). ArticleCAS Google Scholar
Spano, S. et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J. Biol. Chem.274, 17705–17710 (1999). ArticleCAS Google Scholar
Hidalgo Carcedo, C. et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science305, 93–96 (2004). Article Google Scholar
Nardini, M. et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J.22, 3122–3130 (2003). ArticleCAS Google Scholar
Kumar, V. et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell10, 857–869 (2002). ArticleCAS Google Scholar
Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell9, 213–224 (2002). ArticleCAS Google Scholar
Polishchuk, E.V., Di Pentima, A., Luini, A. & Polishchuk, R.S. Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large _trans_-Golgi network tubular domains. Mol. Biol. Cell14, 4470–4485 (2003). ArticleCAS Google Scholar
Boulan, E.R. & Pendergast, M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell20, 45–54 (1980). Article Google Scholar
Matlin, K.S. & Simons, K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell34, 233–243 (1983). ArticleCAS Google Scholar
Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol.143, 1485–1503 (1998). ArticleCAS Google Scholar
Polishchuk, R., Pentima, A.D. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nature Cell Biol.6, 297–307 (2004). ArticleCAS Google Scholar
Polishchuk, R.S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol.148, 45–58 (2000). ArticleCAS Google Scholar
Kasai, K., Shin, H.W., Shinotsuka, C., Murakami, K. & Nakayama, K. Dynamin II is involved in endocytosis but not in the formation of transport vesicles from the _trans_-Golgi network. J. Biochem. (Tokyo)125, 780–789 (1999). ArticleCAS Google Scholar
Cao, H., Thompson, H.M., Krueger, E.W. & McNiven, M.A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci.113, 1993–2002 (2000). CASPubMed Google Scholar
Jones, S.M., Howell, K.E., Henley, J.R., Cao, H. & McNiven, M.A. Role of dynamin in the formation of transport vesicles from the _trans_-Golgi network. Science279, 573–577 (1998). ArticleCAS Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol.2, 125–127 (2000). ArticleCAS Google Scholar
Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol.3, 140–149 (2001). ArticleCAS Google Scholar
Schalk, E.M., Gosiewska, A., Prather, W. & Peterkofsky, B. Post-transcriptional regulation of the pro alpha 1(I) collagen gene in pro alpha 1(I)-deficient, chemically transformed Syrian hamster embryo fibroblasts. Biochem. Biophys. Res. Commun.188, 780–785 (1992). ArticleCAS Google Scholar
Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994). ArticleCAS Google Scholar
Sabharanjak, S., Sharma, P., Parton, R.G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell2, 411–423 (2002). ArticleCAS Google Scholar
Guha, A., Sriram, V., Krishnan, K.S. & Mayor, S. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci.116, 3373–3386 (2003). ArticleCAS Google Scholar
Griffiths, G., Pfeiffer, S., Simons, K. & Matlin, K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol.101, 949–964 (1985). ArticleCAS Google Scholar
Hildebrand, J.D. & Soriano, P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell Biol.22, 5296–5307 (2002). ArticleCAS Google Scholar
Zhang, Q., Piston, D.W. & Goodman, R.H. Regulation of corepressor function by nuclear NADH. Science295, 1895–1897 (2002). CASPubMed Google Scholar
Pagano, M. & Jackson, P.K. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell118, 535–538 (2004). ArticleCAS Google Scholar
Sage, J., Miller, A.L., Perez-Mancera, P.A., Wysocki, J.M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature424, 223–228 (2003). ArticleCAS Google Scholar
Kantheti, P. et al. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron21, 111–122 (1998). ArticleCAS Google Scholar
Di Paolo, G. et al. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron33, 789–804 (2002). ArticleCAS Google Scholar
Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179–188 (1999). ArticleCAS Google Scholar
Sutterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell109, 359–369 (2002). ArticleCAS Google Scholar
Nardini, M. et al. Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS). Acta Crystallogr. D Biol. Crystallogr.58, 1068–1070 (2002). Article Google Scholar
Liou, W., Geuze, H.J. & Slot, J.W. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol.106, 41–58 (1996). ArticleCAS Google Scholar
Mironov, A.A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol.155, 1225–1238 (2001). ArticleCAS Google Scholar