PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival (original) (raw)
References
Sims, D. E. Diversity within pericytes. Clin. Exp. Pharmacol. Physiol.27, 842–846 (2000). ArticleCAS Google Scholar
Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res.314, 15–23 (2003). Article Google Scholar
Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med.9, 661–668 (2003). ArticleCAS Google Scholar
Hirschi, K. K. & D'Amore, P. A. Pericytes in the microvasculature. Cardiovasc. Res.32, 687–698 (1996). ArticleCAS Google Scholar
Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer3, 401–410 (2003). ArticleCAS Google Scholar
Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature407, 242–248 (2000). ArticleCAS Google Scholar
Betsholtz, C., Lindblom, P. & Gerhardt, H. Role of pericytes in vascular morphogenesis. EXS94, 115–125 (2005). Google Scholar
Ozerdem, U. & Stallcup, W. B. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis6, 241–249 (2003). ArticleCAS Google Scholar
Hirschi, K. K., Rohovsky, S. A. & D'Amore, P. A. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol.141, 805–814 (1998). ArticleCAS Google Scholar
Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development126, 3047–3055 (1999). CASPubMed Google Scholar
Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays23, 494–507 (2001). ArticleCAS Google Scholar
Leveen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev.8, 1875–1887 (1994). ArticleCAS Google Scholar
Lindahl, P., Johansson, B., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science126, 3047–3055 (1997). Google Scholar
Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol.153, 543–553 (2001). ArticleCAS Google Scholar
Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J.21, 4307–4316 (2002). ArticleCAS Google Scholar
Hirschi, K. K., Rohovsky, S. A., Beck, L. H., Smith, S. R. & D'Amore, P. A. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res.84, 298–305 (1999). ArticleCAS Google Scholar
Fukushi, J., Makagiansar, I. T. & Stallcup, W. B. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and α3β1 integrin. Mol. Biol. Cell15, 3580–3590 (2004). ArticleCAS Google Scholar
Benjamin, L., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development125, 1591–1598 (1998). CASPubMed Google Scholar
Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.160, 985–1000 (2002). Article Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCAS Google Scholar
Reinmuth, N. et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. Faseb. J.15, 1239–1241 (2001). ArticleCAS Google Scholar
Shaheen, R. M. et al. Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res.61, 1464–1468 (2001). CASPubMed Google Scholar
Heldin, C. H. & Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev.79, 1283–1316 (1999). ArticleCAS Google Scholar
Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev.15, 215–218 (2004). ArticleCAS Google Scholar
Parangi, S. et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl Acad. Sci. USA93, 2002–2007 (1996). ArticleCAS Google Scholar
Bergers, G., Hanahan, D. & Coussens, L. M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol.42, 995–1002 (1998). CASPubMed Google Scholar
Bondjers, C. et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am. J. Pathol.162, 721–729 (2003). ArticleCAS Google Scholar
Cho, H., Kozasa, T., Bondjers, C., Betsholtz, C. & Kehrl, J. H. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb. J.17, 440–442 (2003). ArticleCAS Google Scholar
Kanamori, M., Vanden Berg, S. R., Bergers, G., Berger, M. S. & Pieper, R. O. Integrin β3 overexpression suppresses tumor growth in a human model of gliomagenesis: implications for the role of β3 overexpression in glioblastoma multiforme. Cancer Res.64, 2751–2758 (2004). ArticleCAS Google Scholar
Nishishita, T. & Lin, P. C. Angiopoietin 1, PDGF-B, and TGF-β gene regulation in endothelial cell and smooth muscle cell interaction. J. Cell. Biochem.91, 584–593 (2004). ArticleCAS Google Scholar
Darland, D. C. & D'Amore, P. A. Cell-cell interactions in vascular development. Curr. Top. Dev. Biol.52, 107–149 (2001). ArticleCAS Google Scholar
Chen, S. & Lechleider, R. J. Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ. Res.94, 1195–1202 (2004). ArticleCAS Google Scholar
Rajantie, I. et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood104, 2084–2086 (2004). ArticleCAS Google Scholar
Ding, R., Darland, D. C., Parmacek, M. S. & D'Amore, P. A. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev.13, 509–520 (2004). ArticleCAS Google Scholar
Abramsson, A. et al. Analysis of mural cell recruitment to tumor vessels. Circulation105, 112–117 (2002). ArticleCAS Google Scholar
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med.7, 1194–1201 (2001). ArticleCAS Google Scholar
Rabbany, S. Y., Heissig, B., Hattori, K. & Rafii, S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol. Med.9, 109–117 (2003). ArticleCAS Google Scholar
Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J. Clin. Invest.103, 159–165 (1999). ArticleCAS Google Scholar
Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol.23, 939–952 (2004). Article Google Scholar
Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W. B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn.222, 218–227 (2001). ArticleCAS Google Scholar
Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to progression from angiogenic progenitors. Genes Dev.10, 2105–2116 (1996). ArticleCAS Google Scholar
Ades, E. W. et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol.99, 683–690 (1992). ArticleCAS Google Scholar
Radvanyi, F., Christgau, S., Baekkeskov, S., Jolicoeur, C. & Hanahan, D. Pancreatic β cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol. Cell. Biol.13, 4223–4232 (1993). ArticleCAS Google Scholar