PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival (original) (raw)

References

  1. Sims, D. E. Diversity within pericytes. Clin. Exp. Pharmacol. Physiol. 27, 842–846 (2000).
    Article CAS Google Scholar
  2. Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).
    Article Google Scholar
  3. Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med. 9, 661–668 (2003).
    Article CAS Google Scholar
  4. Hirschi, K. K. & D'Amore, P. A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).
    Article CAS Google Scholar
  5. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer 3, 401–410 (2003).
    Article CAS Google Scholar
  6. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).
    Article CAS Google Scholar
  7. Betsholtz, C., Lindblom, P. & Gerhardt, H. Role of pericytes in vascular morphogenesis. EXS 94, 115–125 (2005).
    Google Scholar
  8. Ozerdem, U. & Stallcup, W. B. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–249 (2003).
    Article CAS Google Scholar
  9. Hirschi, K. K., Rohovsky, S. A. & D'Amore, P. A. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141, 805–814 (1998).
    Article CAS Google Scholar
  10. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).
    CAS PubMed Google Scholar
  11. Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507 (2001).
    Article CAS Google Scholar
  12. Leveen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8, 1875–1887 (1994).
    Article CAS Google Scholar
  13. Lindahl, P., Johansson, B., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 126, 3047–3055 (1997).
    Google Scholar
  14. Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).
    Article CAS Google Scholar
  15. Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 21, 4307–4316 (2002).
    Article CAS Google Scholar
  16. Hirschi, K. K., Rohovsky, S. A., Beck, L. H., Smith, S. R. & D'Amore, P. A. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84, 298–305 (1999).
    Article CAS Google Scholar
  17. Fukushi, J., Makagiansar, I. T. & Stallcup, W. B. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and α3β1 integrin. Mol. Biol. Cell 15, 3580–3590 (2004).
    Article CAS Google Scholar
  18. Benjamin, L., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598 (1998).
    CAS PubMed Google Scholar
  19. Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000 (2002).
    Article Google Scholar
  20. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).
    Article CAS Google Scholar
  21. Reinmuth, N. et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. Faseb. J. 15, 1239–1241 (2001).
    Article CAS Google Scholar
  22. Shaheen, R. M. et al. Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res. 61, 1464–1468 (2001).
    CAS PubMed Google Scholar
  23. Heldin, C. H. & Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316 (1999).
    Article CAS Google Scholar
  24. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–218 (2004).
    Article CAS Google Scholar
  25. Parangi, S. et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl Acad. Sci. USA 93, 2002–2007 (1996).
    Article CAS Google Scholar
  26. Bergers, G., Hanahan, D. & Coussens, L. M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol. 42, 995–1002 (1998).
    CAS PubMed Google Scholar
  27. Bondjers, C. et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am. J. Pathol. 162, 721–729 (2003).
    Article CAS Google Scholar
  28. Cho, H., Kozasa, T., Bondjers, C., Betsholtz, C. & Kehrl, J. H. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb. J. 17, 440–442 (2003).
    Article CAS Google Scholar
  29. Kanamori, M., Vanden Berg, S. R., Bergers, G., Berger, M. S. & Pieper, R. O. Integrin β3 overexpression suppresses tumor growth in a human model of gliomagenesis: implications for the role of β3 overexpression in glioblastoma multiforme. Cancer Res. 64, 2751–2758 (2004).
    Article CAS Google Scholar
  30. Nishishita, T. & Lin, P. C. Angiopoietin 1, PDGF-B, and TGF-β gene regulation in endothelial cell and smooth muscle cell interaction. J. Cell. Biochem. 91, 584–593 (2004).
    Article CAS Google Scholar
  31. Darland, D. C. & D'Amore, P. A. Cell-cell interactions in vascular development. Curr. Top. Dev. Biol. 52, 107–149 (2001).
    Article CAS Google Scholar
  32. Chen, S. & Lechleider, R. J. Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ. Res. 94, 1195–1202 (2004).
    Article CAS Google Scholar
  33. Rajantie, I. et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104, 2084–2086 (2004).
    Article CAS Google Scholar
  34. Ding, R., Darland, D. C., Parmacek, M. S. & D'Amore, P. A. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev. 13, 509–520 (2004).
    Article CAS Google Scholar
  35. Abramsson, A. et al. Analysis of mural cell recruitment to tumor vessels. Circulation 105, 112–117 (2002).
    Article CAS Google Scholar
  36. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).
    Article CAS Google Scholar
  37. Rabbany, S. Y., Heissig, B., Hattori, K. & Rafii, S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol. Med. 9, 109–117 (2003).
    Article CAS Google Scholar
  38. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J. Clin. Invest. 103, 159–165 (1999).
    Article CAS Google Scholar
  39. Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2004).
    Article Google Scholar
  40. Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W. B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn. 222, 218–227 (2001).
    Article CAS Google Scholar
  41. Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to progression from angiogenic progenitors. Genes Dev. 10, 2105–2116 (1996).
    Article CAS Google Scholar
  42. Ades, E. W. et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99, 683–690 (1992).
    Article CAS Google Scholar
  43. Radvanyi, F., Christgau, S., Baekkeskov, S., Jolicoeur, C. & Hanahan, D. Pancreatic β cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol. Cell. Biol. 13, 4223–4232 (1993).
    Article CAS Google Scholar

Download references