Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol.20, 593–618 (2004). ArticleCAS Google Scholar
Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol.14, 151–156 (2001). ArticleCAS Google Scholar
Tsai, L. H., Takahashi, T., Caviness, V. S. Jr & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development119, 1029–1040 (1993). CASPubMed Google Scholar
Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci.18, 6370–6377 (1998). ArticleCAS Google Scholar
Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet.3, 342–355 (2002). ArticleCAS Google Scholar
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCAS Google Scholar
Goto, T., Mitsuhashi, T. & Takahashi, T. Altered patterns of neuron production in the p27 knockout mouse. Dev. Neurosci.26, 208–217 (2004). ArticleCAS Google Scholar
Tarui, T. et al. Overexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cereb. Cortex15, 1343–1355 (2005). ArticleCAS Google Scholar
Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell85, 733–744 (1996). ArticleCAS Google Scholar
Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell85, 721–732 (1996). ArticleCAS Google Scholar
Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell85, 707–720 (1996). ArticleCAS Google Scholar
Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J.20, 6672–6682 (2001). ArticleCAS Google Scholar
Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J.21, 3390–3401 (2002). ArticleCAS Google Scholar
McAllister, S. S., Becker-Hapak, M., Pintucci, G., Pagano, M. & Dowdy, S. F. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol. Cell. Biol.23, 216–228 (2003). ArticleCAS Google Scholar
Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J. Biol. Chem.275, 25146–25154 (2000). ArticleCAS Google Scholar
Kotake, Y., Nakayama, K., Ishida, N. & Nakayama, K. I. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J. Biol. Chem.280, 1095–1102 (2005). ArticleCAS Google Scholar
Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J.22, 4190–4201 (2003). ArticleCAS Google Scholar
Kawauchi, T., Chihama, K., Nishimura, Y. V., Nabeshima, Y. & Hoshino, M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem. Biophys. Res. Commun.331, 50–55 (2005). ArticleCAS Google Scholar
Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron18, 29–42 (1997). ArticleCAS Google Scholar
Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem.277, 14355–14358 (2002). ArticleCAS Google Scholar
Connor, M. K. et al. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol. Biol. Cell14, 201–213 (2003). ArticleCAS Google Scholar
Lee, M. H. et al. The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc. Natl Acad. Sci. USA93, 3259–3263 (1996). ArticleCAS Google Scholar
Morisaki, H. et al. Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase (Cdk) inhibitor by cyclin E/Cdk2. Biochem. Biophys. Res. Commun.240, 386–390 (1997). ArticleCAS Google Scholar
Lacy, E. R. et al. Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J. Mol. Biol.349, 764–773 (2005). ArticleCAS Google Scholar
Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci.23, 9996–10001 (2003). ArticleCAS Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004). ArticleCAS Google Scholar
Nikolic, M. The molecular mystery of neuronal migration: FAK and Cdk5. Trends Cell Biol.14, 1–5 (2004). ArticleCAS Google Scholar
Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell114, 469–482 (2003). ArticleCAS Google Scholar
Gungabissoon, R. A. & Bamburg, J. R. Regulation of growth cone actin dynamics by ADF/cofilin. J. Histochem. Cytochem.51, 411–420 (2003). ArticleCAS Google Scholar
Moriyama, K., Iida, K. & Yahara, I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells1, 73–86 (1996). ArticleCAS Google Scholar
Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev.18, 862–876 (2004). ArticleCAS Google Scholar
Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature413, 323–327 (2001). ArticleCAS Google Scholar
Mitsuhashi, T. et al. Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc. Natl Acad. Sci. USA98, 6435–6440 (2001). ArticleCAS Google Scholar
Besson, A., Assoian, R. K. & Roberts, J. M. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nature Rev. Cancer4, 948–955 (2004). ArticleCAS Google Scholar
Baldassarre, G. et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell7, 51–63 (2005). ArticleCAS Google Scholar
Nagahama, H., Hatakeyama, S., Nakayama, K., Nagata, M. & Tomita, K. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol.203, 77–87 (2001). ArticleCAS Google Scholar
Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci.6, 1277–1283. Epub 2003 Nov 16 (2003). ArticleCAS Google Scholar
Gotz, M. Doublecortin finds its place. Nature Neurosci.6, 1245–1247 (2003). Article Google Scholar
Corbo, J. C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci.22, 7548–7557 (2002). ArticleCAS Google Scholar
Izawa, I., Amano, M., Chihara, K., Yamamoto, T. & Kaibuchi, K. Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene17, 2863–2871 (1998). ArticleCAS Google Scholar
Amano, M. et al. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem.274, 32418–32424 (1999). ArticleCAS Google Scholar
King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem.275, 41201–41209 (2000). ArticleCAS Google Scholar
Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA99, 6047–6052 (2002). ArticleCAS Google Scholar
Matsuo, N., Hoshino, M., Yoshizawa, M. & Nabeshima, Y. Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth. J. Biol. Chem.277, 2860–2868 (2002). ArticleCAS Google Scholar
Matsuo, N., Terao, M., Nabeshima, Y. & Hoshino, M. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology. Mol. Cell. Neurosci.24, 69–81 (2003). ArticleCAS Google Scholar
Yoshizawa, M. et al. Involvement of a Rac activator,P-Rex1, in neurotrophin-derived signaling and neuronal migration. J. Neurosci.25, 4406–4419 (2005). ArticleCAS Google Scholar
Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol.144, 59–69 (1999). ArticleCAS Google Scholar