Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration (original) (raw)

References

  1. Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).
    Article CAS Google Scholar
  2. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).
    Article CAS Google Scholar
  3. Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618 (2004).
    Article CAS Google Scholar
  4. Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001).
    Article CAS Google Scholar
  5. Tsai, L. H., Takahashi, T., Caviness, V. S. Jr & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993).
    CAS PubMed Google Scholar
  6. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).
    Article CAS Google Scholar
  7. Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet. 3, 342–355 (2002).
    Article CAS Google Scholar
  8. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).
    Article CAS Google Scholar
  9. Goto, T., Mitsuhashi, T. & Takahashi, T. Altered patterns of neuron production in the p27 knockout mouse. Dev. Neurosci. 26, 208–217 (2004).
    Article CAS Google Scholar
  10. Tarui, T. et al. Overexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cereb. Cortex 15, 1343–1355 (2005).
    Article CAS Google Scholar
  11. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).
    Article CAS Google Scholar
  12. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721–732 (1996).
    Article CAS Google Scholar
  13. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).
    Article CAS Google Scholar
  14. Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001).
    Article CAS Google Scholar
  15. Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J. 21, 3390–3401 (2002).
    Article CAS Google Scholar
  16. McAllister, S. S., Becker-Hapak, M., Pintucci, G., Pagano, M. & Dowdy, S. F. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol. Cell. Biol. 23, 216–228 (2003).
    Article CAS Google Scholar
  17. Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J. Biol. Chem. 275, 25146–25154 (2000).
    Article CAS Google Scholar
  18. Kotake, Y., Nakayama, K., Ishida, N. & Nakayama, K. I. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J. Biol. Chem. 280, 1095–1102 (2005).
    Article CAS Google Scholar
  19. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 22, 4190–4201 (2003).
    Article CAS Google Scholar
  20. Kawauchi, T., Chihama, K., Nishimura, Y. V., Nabeshima, Y. & Hoshino, M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem. Biophys. Res. Commun. 331, 50–55 (2005).
    Article CAS Google Scholar
  21. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).
    Article CAS Google Scholar
  22. Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem. 277, 14355–14358 (2002).
    Article CAS Google Scholar
  23. Connor, M. K. et al. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol. Biol. Cell 14, 201–213 (2003).
    Article CAS Google Scholar
  24. Lee, M. H. et al. The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc. Natl Acad. Sci. USA 93, 3259–3263 (1996).
    Article CAS Google Scholar
  25. Morisaki, H. et al. Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase (Cdk) inhibitor by cyclin E/Cdk2. Biochem. Biophys. Res. Commun. 240, 386–390 (1997).
    Article CAS Google Scholar
  26. Lacy, E. R. et al. Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J. Mol. Biol. 349, 764–773 (2005).
    Article CAS Google Scholar
  27. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).
    Article CAS Google Scholar
  28. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).
    Article CAS Google Scholar
  29. Nikolic, M. The molecular mystery of neuronal migration: FAK and Cdk5. Trends Cell Biol. 14, 1–5 (2004).
    Article CAS Google Scholar
  30. Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).
    Article CAS Google Scholar
  31. Gungabissoon, R. A. & Bamburg, J. R. Regulation of growth cone actin dynamics by ADF/cofilin. J. Histochem. Cytochem. 51, 411–420 (2003).
    Article CAS Google Scholar
  32. Moriyama, K., Iida, K. & Yahara, I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73–86 (1996).
    Article CAS Google Scholar
  33. Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 18, 862–876 (2004).
    Article CAS Google Scholar
  34. Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413, 323–327 (2001).
    Article CAS Google Scholar
  35. Mitsuhashi, T. et al. Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc. Natl Acad. Sci. USA 98, 6435–6440 (2001).
    Article CAS Google Scholar
  36. Besson, A., Assoian, R. K. & Roberts, J. M. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nature Rev. Cancer 4, 948–955 (2004).
    Article CAS Google Scholar
  37. Baldassarre, G. et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7, 51–63 (2005).
    Article CAS Google Scholar
  38. Nagahama, H., Hatakeyama, S., Nakayama, K., Nagata, M. & Tomita, K. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol. 203, 77–87 (2001).
    Article CAS Google Scholar
  39. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci. 6, 1277–1283. Epub 2003 Nov 16 (2003).
    Article CAS Google Scholar
  40. Gotz, M. Doublecortin finds its place. Nature Neurosci. 6, 1245–1247 (2003).
    Article Google Scholar
  41. Corbo, J. C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 22, 7548–7557 (2002).
    Article CAS Google Scholar
  42. Izawa, I., Amano, M., Chihara, K., Yamamoto, T. & Kaibuchi, K. Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17, 2863–2871 (1998).
    Article CAS Google Scholar
  43. Amano, M. et al. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274, 32418–32424 (1999).
    Article CAS Google Scholar
  44. King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).
    Article CAS Google Scholar
  45. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).
    Article CAS Google Scholar
  46. Matsuo, N., Hoshino, M., Yoshizawa, M. & Nabeshima, Y. Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth. J. Biol. Chem. 277, 2860–2868 (2002).
    Article CAS Google Scholar
  47. Matsuo, N., Terao, M., Nabeshima, Y. & Hoshino, M. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology. Mol. Cell. Neurosci. 24, 69–81 (2003).
    Article CAS Google Scholar
  48. Yoshizawa, M. et al. Involvement of a Rac activator,P-Rex1, in neurotrophin-derived signaling and neuronal migration. J. Neurosci. 25, 4406–4419 (2005).
    Article CAS Google Scholar
  49. Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol. 144, 59–69 (1999).
    Article CAS Google Scholar

Download references