The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores (original) (raw)
References
Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension vs. attachment. Trends Cell Biol.15, 486–493 (2005). ArticleCAS Google Scholar
Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet.37, 251–282 (2003). ArticleCAS Google Scholar
Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev.15, 3118–3129 (2001). ArticleCAS Google Scholar
Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol.126, 1241–1253 (1994). ArticleCAS Google Scholar
King, J. M. & Nicklas, R. B. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J. Cell Sci.113, 3815–3823 (2000). CASPubMed Google Scholar
Vagnarelli, P. & Earnshaw, W. C. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma113, 211–222 (2004). Article Google Scholar
Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p. Cell111, 163–172 (2002). ArticleCAS Google Scholar
Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol.129, 1601–1615 (1995). ArticleCAS Google Scholar
McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell. Dev. Biol.19, 519–539 (2003). ArticleCAS Google Scholar
Pinsky, B. A., Tatsutani, S. Y., Collins, K. A. & Biggins, S. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell5, 735–745 (2003). ArticleCAS Google Scholar
Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev.13, 532–544 (1999). ArticleCAS Google Scholar
Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the Ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol.145, 1381–1394 (1999). ArticleCAS Google Scholar
Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell108, 317–329 (2002). ArticleCAS Google Scholar
De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev.17, 2902–2921 (2003). ArticleCAS Google Scholar
Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol.11, 167–172 (2001). ArticleCAS Google Scholar
Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science307, 130–133 (2005). ArticleCAS Google Scholar
Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci.114, 4173–4183 (2001). CASPubMed Google Scholar
Draviam, V. M., Xie, S. & Sorger, P. K. Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev.14, 120–125 (2004). ArticleCAS Google Scholar
Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene23, 2016–2027 (2004). ArticleCAS Google Scholar
Sherman, F., Fink, G. & Lawrence, C. in Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1974). Google Scholar
Rose, M. D., Winston, F. & Heiter, P. in Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1990). Google Scholar
Brown, M. T., Goetsch, L. & Hartwell, L. H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae. J. Cell Biol.123, 387–403 (1993). ArticleCAS Google Scholar
Osborne, M. A., Schlenstedt, G., Jinks, T. & Silver, P. A. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast. J. Cell Biol.125, 853–866 (1994). ArticleCAS Google Scholar
Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol.141, 967–977 (1998). ArticleCAS Google Scholar
Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev.16, 183–197 (2002). ArticleCAS Google Scholar
Elliott, S., Knop, M., Schlenstedt, G. & Schiebel, E. Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. Proc. Natl Acad. Sci. USA96, 6205–6210 (1999). ArticleCAS Google Scholar
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCAS Google Scholar
Minshull, J. et al. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol.6, 1609–1620 (1996). ArticleCAS Google Scholar
Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol.160, 329–339 (2003). ArticleCAS Google Scholar