The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores (original) (raw)

References

  1. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension vs. attachment. Trends Cell Biol. 15, 486–493 (2005).
    Article CAS Google Scholar
  2. Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).
    Article CAS Google Scholar
  3. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).
    Article CAS Google Scholar
  4. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994).
    Article CAS Google Scholar
  5. King, J. M. & Nicklas, R. B. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J. Cell Sci. 113, 3815–3823 (2000).
    CAS PubMed Google Scholar
  6. Vagnarelli, P. & Earnshaw, W. C. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113, 211–222 (2004).
    Article Google Scholar
  7. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p. Cell 111, 163–172 (2002).
    Article CAS Google Scholar
  8. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).
    Article CAS Google Scholar
  9. McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell. Dev. Biol. 19, 519–539 (2003).
    Article CAS Google Scholar
  10. Pinsky, B. A., Tatsutani, S. Y., Collins, K. A. & Biggins, S. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell 5, 735–745 (2003).
    Article CAS Google Scholar
  11. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).
    Article CAS Google Scholar
  12. Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the Ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 145, 1381–1394 (1999).
    Article CAS Google Scholar
  13. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).
    Article CAS Google Scholar
  14. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).
    Article CAS Google Scholar
  15. Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172 (2001).
    Article CAS Google Scholar
  16. Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130–133 (2005).
    Article CAS Google Scholar
  17. Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci. 114, 4173–4183 (2001).
    CAS PubMed Google Scholar
  18. Draviam, V. M., Xie, S. & Sorger, P. K. Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev. 14, 120–125 (2004).
    Article CAS Google Scholar
  19. Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016–2027 (2004).
    Article CAS Google Scholar
  20. Sherman, F., Fink, G. & Lawrence, C. in Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1974).
    Google Scholar
  21. Rose, M. D., Winston, F. & Heiter, P. in Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1990).
    Google Scholar
  22. Brown, M. T., Goetsch, L. & Hartwell, L. H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae. J. Cell Biol. 123, 387–403 (1993).
    Article CAS Google Scholar
  23. Osborne, M. A., Schlenstedt, G., Jinks, T. & Silver, P. A. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast. J. Cell Biol. 125, 853–866 (1994).
    Article CAS Google Scholar
  24. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998).
    Article CAS Google Scholar
  25. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).
    Article CAS Google Scholar
  26. Elliott, S., Knop, M., Schlenstedt, G. & Schiebel, E. Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. Proc. Natl Acad. Sci. USA 96, 6205–6210 (1999).
    Article CAS Google Scholar
  27. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS Google Scholar
  28. Minshull, J. et al. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol. 6, 1609–1620 (1996).
    Article CAS Google Scholar
  29. Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol. 160, 329–339 (2003).
    Article CAS Google Scholar

Download references