- Kim, J. H. et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature 434, 921–926 (2005).
Article CAS Google Scholar
- Shevde, L. A. & Welch, D. R. Metastasis suppressor pathways — an evolving paradigm. Cancer Lett. 198, 1–20 (2003).
Article CAS Google Scholar
- Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cell. Nature Rev. Cancer 3, 55–63 (2002).
Article Google Scholar
- Petrylak, D. P. Metastases suppressors and prostate cancer. Nature Med. 1, 739–740 (1995).
Article CAS Google Scholar
- Dong, J. -T. et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268, 884–886 (1995).
Article CAS Google Scholar
- Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).
CAS PubMed Google Scholar
- McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002).
Article CAS Google Scholar
- Baek, S. H. & Rosenfeld, M. G. Nuclear receptor coregulators: their modification codes and regulatory mechanism by translocation. Biochem. Biophys. Res. Commun. 319, 707–714 (2004).
Article CAS Google Scholar
- Bauer, A. et al. Pontin52 and Reptin52 function as antagonistic regulators of β-catenin signaling activity. EMBO J. 19, 6121–6130 (2000).
Article CAS Google Scholar
- Feng, Y., Lee, N. & Fearon, E. R. TIP49 regulates β-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Cancer Res. 63, 8726–8734 (2003).
CAS PubMed Google Scholar
- Kanemaki, M. et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J. Biol. Chem. 274, 22437–22444 (1999).
Article CAS Google Scholar
- Jonsson, Z. O., Jha, S., Wohlschlegel J. A. & Dutta, A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16, 465–477 (2004).
Article CAS Google Scholar
- Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core polycomb repressive complex. Mol. Cell 8, 545–556 (2001).
Article CAS Google Scholar
- Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).
Article CAS Google Scholar
- Fuchs, M. et al. The p400 complex is an essential E1A transformation target. Cell 106, 297–307 (2001).
Article CAS Google Scholar
- Billin, A. N., Thirlwell, H. & Ayer, D. E. β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol. Cell Biol. 20, 6882–6690 (2000).
Article CAS Google Scholar
- Baek, S. H. et al. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc. Natl. Acad. Sci. USA 100, 3245–3250 (2003).
Article CAS Google Scholar
- Seeler, J. S. et al. Common properties of nuclear body protein SP100 and TIF1α chromatin factor: role of SUMO modification. Mol. Cell Biol. 21, 3314–3324 (2001).
Article CAS Google Scholar
- Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).
Article CAS Google Scholar
- Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).
Article CAS Google Scholar
- Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–351 (1999).
Article CAS Google Scholar
- Kim, K. I. et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem. 275, 14102–14106 (2000).
Article CAS Google Scholar
- Best, J. L. et al. SUMO-1 protease-1 regulates gene transcription through PML. Mol. Cell 10, 843–855 (2002).
Article CAS Google Scholar
- Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N. & Elledge, S. J. The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol. Cell 9, 1169–1182 (2002).
Article CAS Google Scholar
- Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).
Article CAS Google Scholar
- Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).
Article CAS Google Scholar
- Ross, S., Best, J. L., Zon, L. I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842 (2002).
Article CAS Google Scholar
- Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. & Tansey, W. P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).
Article CAS Google Scholar
- Alarcon-Vargas, D. & Ronai, Z. SUMO in cancer-wrestlers wanted. Cancer Biol. Therapy 1, 237–242 (2002).
Article CAS Google Scholar
- Zheng, G. & Yang, Y. C. ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J. Biol. Chem. 279, 42410–42421 (2004).
Article CAS Google Scholar
- Girdwood, D. et al. p300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).
Article CAS Google Scholar
- Baek, S. H. et al. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein. Cell 110, 55–67 (2002).
Article CAS Google Scholar
- Cheng, J. et al. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell Biol. 24, 6021–6028 (2004).
Article CAS Google Scholar
- Kurihara, I. et al. Ubc9 and protein inhibitor of activated STAT1 activate chicken ovalbumin upstream promoter-transcription factor I-mediated human CYP11B2 gene transcription. J. Biol. Chem. 280, 6721–6730 (2005).
Article CAS Google Scholar
- Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411, 494–498 (2001).
Article CAS Google Scholar