Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export (original) (raw)
References
Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science309, 1514–1518 (2005). ArticleCAS Google Scholar
Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell. Biol.5, 232–241 (2004). ArticleCAS Google Scholar
Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science291, 121–125 (2001). ArticleCAS Google Scholar
Fairman, M. E. et al. Protein displacement by DExH/D 'RNA helicases' without duplex unwinding. Science304, 730–734 (2004). ArticleCAS Google Scholar
Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J.17, 2651–2662 (1998). ArticleCAS Google Scholar
Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J.17, 2663–2676 (1998). ArticleCAS Google Scholar
Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J.18, 4332–4347 (1999). ArticleCAS Google Scholar
Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J.18, 5778–5788 (1999). ArticleCAS Google Scholar
Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J.18, 5761–5777 (1999). ArticleCAS Google Scholar
Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell16, 749–760 (2004). ArticleCAS Google Scholar
Stutz, F. et al. The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev.11, 2857–2868 (1997). ArticleCAS Google Scholar
Saavedra, C. A., Hammell, C. M., Heath, C. V. & Cole, C. N. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev.11, 2845–2856 (1997). ArticleCAS Google Scholar
Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell20, 645–651 (2005). ArticleCAS Google Scholar
Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J.21, 1177–1187 (2002). ArticleCAS Google Scholar
Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell14, 1664–1676 (2003). ArticleCAS Google Scholar
York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science285, 96–100 (1999). ArticleCAS Google Scholar
Miller, A. L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J. Biol. Chem.279, 51022–51032 (2004). ArticleCAS Google Scholar
Hanakahi, L. A. & West, S. C. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J.21, 2038–2044 (2002). ArticleCAS Google Scholar
Ma, Y. & Lieber, M. R. Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J. Biol. Chem.277, 10756–10759 (2002). ArticleCAS Google Scholar
Hanakahi, L. A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S. C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell102, 721–729 (2000). ArticleCAS Google Scholar
Shen, X., Xiao, H., Ranallo, R., Wu, W. H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science299, 112–114 (2003). ArticleCAS Google Scholar
Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science299, 114–116 (2003). ArticleCAS Google Scholar
Saiardi, A., Resnick, A. C., Snowman, A. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl Acad. Sci. USA102, 1911–1914 (2005). ArticleCAS Google Scholar
York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D. & York, J. D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem.280, 4264–4269 (2005). ArticleCAS Google Scholar
Saiardi, A., Sciambi, C., McCaffery, J. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl Acad. Sci. USA99, 14206–14211 (2002). ArticleCAS Google Scholar
Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science309, 1534–1539 (2005). ArticleCAS Google Scholar
Flick, J. S. & Thorner, J. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol.13, 5861–5876 (1993). ArticleCAS Google Scholar
Odom, A. R., Stahlberg, A., Wente, S. R. & York, J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science287, 2026–2029 (2000). ArticleCAS Google Scholar
Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P. & Snyder, S. H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol.9, 1323–1326 (1999). ArticleCAS Google Scholar
Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene367, 17–37 (2006). ArticleCAS Google Scholar
Larsson, C., Nilsson, A., Blomberg, A. & Gustafsson, L. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J. Bacteriol.179, 7243–7250 (1997). ArticleCAS Google Scholar
Estruch, F., Hodge, C. A., Rodriguez-Navarro, S. & Cole, C. N. Physical and genetic interactions link the yeast protein Zds1p with mRNA nuclear export. J. Biol. Chem.280, 9691–9697 (2005). ArticleCAS Google Scholar
Rogers, G. W., Jr., Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol.72, 307–331 (2002). ArticleCAS Google Scholar
Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Struct. Mol. Biol.12, 861–869 (2005). ArticleCAS Google Scholar
Rollenhagen, C., Hodge, C. A. & Cole, C. N. The nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock. Mol. Cell. Biol.24, 4869–4879 (2004). ArticleCAS Google Scholar
Takemura, R., Inoue, Y. & Izawa, S. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J. Cell Sci.117, 4189–4197 (2004). ArticleCAS Google Scholar
Vainberg, I. E., Dower, K. & Rosbash, M. Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Mol. Cell. Biol.20, 3996–4005 (2000). ArticleCAS Google Scholar
Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (John Wiley and Sons, Hoboken,1987). Google Scholar
Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol.4, 463–467 (1997). ArticleCAS Google Scholar
Yang, Q. & Jankowsky, E. ATP- and ADP-Dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry44, 13591–13601 (2005). ArticleCAS Google Scholar
Huang, T. G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem.269, 16493–16501 (1994). CASPubMed Google Scholar
Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol101, 181–191 (1983). ArticleCAS Google Scholar
Maurer, P. et al. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol. Biol. Cell12, 539–549 (2001). ArticleCAS Google Scholar