Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res.22, 3551–3555 (1994). CASPubMedPubMed Central Google Scholar
Bargonetti, J. & Manfredi, J. J. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol.14, 86–91 (2002). ArticleCAS Google Scholar
Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer4, 793–805 (2004). ArticleCAS Google Scholar
Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser 20, requires tetramerization. EMBO J.18, 1815–1823 (1999). ArticleCAS Google Scholar
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev.14, 289–300 (2000). CASPubMedPubMed Central Google Scholar
Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev.14, 278–288 (2000). CASPubMedPubMed Central Google Scholar
Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science287, 1824–1827 (2000). ArticleCAS Google Scholar
Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem.275, 9278–9283 (2000). ArticleCAS Google Scholar
Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275, 8945–8951 (2000). ArticleCAS Google Scholar
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature387, 296–299 (1997). ArticleCAS Google Scholar
Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature387, 299–303 (1997). ArticleCAS Google Scholar
Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J.12, 461–468 (1993). ArticleCAS Google Scholar
Bech-Otschir, D. et al. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J.20, 1630–1639 (2001). ArticleCAS Google Scholar
Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J.20, 1331–1340 (2001). ArticleCAS Google Scholar
Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol.20, 8458–8467 (2000). ArticleCAS Google Scholar
Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J.18, 6455–6461 (1999). ArticleCAS Google Scholar
Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J.18, 6462–6471 (1999). ArticleCAS Google Scholar
Fuchs, S. Y., Lee, C. G., Pan, Z. Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell110, 531 (2002). Article Google Scholar
Kearse, K. P. & Hart, G. W. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl Acad. Sci. U.S.A.88, 1701–1705 (1991). ArticleCAS Google Scholar
Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and _O_-GlcNAc. Science291, 2376–2378 (2001). ArticleCAS Google Scholar
Hanover, J. A. Glycan-dependent signaling: _O_-linked N-acetylglucosamine. FASEB J.15, 1865–1876 (2001). ArticleCAS Google Scholar
Shaw, P., Freeman, J., Bovey, R. & Iggo, R. Regulation of specific DNA binding by p53: evidence for a role for _O_-glycosylation and charged residues at the carboxy-terminus. Oncogene12, 921–930 (1996). CASPubMed Google Scholar
Toleman, C., Paterson, A. J., Shin, R. & Kudlow, J. E. Streptozotocin inhibits _O_-GlcNAcase via the production of a transition state analog. Biochem. Biophys. Res. Commun.340, 526–534 (2006). ArticleCAS Google Scholar
Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics1, 791–804 (2002). ArticleCAS Google Scholar
Chalkley, R. J. & Burlingame, A. L. Identification of novel sites of _O_-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol. Cell. Proteomics2, 182–190 (2003). ArticleCAS Google Scholar
Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science266, 807–810 (1994). ArticleCAS Google Scholar
Kang, H. T., Ju, J. W., Cho, J. W. & Hwang, E. S. Down-regulation of Sp1 activity through modulation of _O_-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J. Biol. Chem.278, 51223–51231 (2003). ArticleCAS Google Scholar
Konrad, R. J., Mikolaenko, I., Tolar, J. F., Liu, K. & Kudlow, J. E. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic β-cell _O_-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem. J.356, 31–41 (2001). ArticleCAS Google Scholar
Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci.115, 467–473 (2002). CASPubMed Google Scholar
Comer, F. I. & Hart, G. W. _O_-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between _O_-GlcNAc and _O_-phosphate. J. Biol. Chem.275, 29179–29182 (2000). ArticleCAS Google Scholar
Clore, G. M. et al. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nature Struct. Biol.2, 321–333 (1995). ArticleCAS Google Scholar
Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene24, 6976–6981 (2005). ArticleCAS Google Scholar
Saito, S. et al. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem.278, 37536–37544 (2003). ArticleCAS Google Scholar
Schon, O., Friedler, A., Bycroft, M., Freund, S. M., & Fersht, A. R. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol.323, 491–501 (2002). ArticleCAS Google Scholar
Canadillas, J. M. et al. Solution structure of p53 core domain: structural basis for its instability. Proc. Natl Acad. Sci. USA103, 2109–2114 (2006). Article Google Scholar
Cheng, X., Cole, R. N., Zaia, J. & Hart, G. W. Alternative _O_-glycosylation/_O_-phosphorylation of the murine estrogen receptor β. Biochemistry39, 11609–11620 (2000). ArticleCAS Google Scholar
Cheng, X. & Hart, G. W. Alternative _O_-glycosylation/_O_-phosphorylation of serine-16 in murine estrogen receptor β: post-translational regulation of turnover and transactivation activity. J. Biol. Chem.276, 10570–10575 (2001). ArticleCAS Google Scholar
Gao, Y., Parker, G. J. & Hart, G. W. Streptozotocin-induced β-cell death is independent of its inhibition of _O_-GlcNAcase in pancreatic Min6 cells. Arch. Biochem. Biophys.383, 296–302 (2000). ArticleCAS Google Scholar
Haltiwanger, R. S., Grove, K. & Philipsberg, G. A. Modulation of _O_-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide _O_-GlcNAc-β-N-acetylglucosaminidase inhibitor _O_-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem.273, 3611–3617 (1998). ArticleCAS Google Scholar
Zhang, F. et al. _O_-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell115, 715–725 (2003). ArticleCAS Google Scholar
Liu, K. et al. Accumulation of protein _O_-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high _O_-GlcNAc metabolism. J. Neurochem.89, 1044–1055 (2004). ArticleCAS Google Scholar
Fiordaliso, F. et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes50, 2363–2375 (2001). ArticleCAS Google Scholar
Licitra, L. et al. Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J. Clin. Oncol.22, 4901–4906 (2004). ArticleCAS Google Scholar
Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S. & Lin, S. R. Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br. J. Cancer80, 1080–1086 (1999). ArticleCAS Google Scholar
Morgan, S. E. et al. Differences in mutant p53 protein stability and functional activity in teniposide-sensitive and -resistant human leukemic CEM cells. Oncogene19, 5010–5019 (2000). ArticleCAS Google Scholar
Ryu, J. et al. Intracellular delivery of p53 fused to the basic domain of HIV-1 tat. Mol. Cells17, 353–359 (2004). CASPubMed Google Scholar
Wang, W., Takimoto, R., Rastinejad, F. & El-Deiry, W. S. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol.23, 2171–2181 (2003). ArticleCAS Google Scholar