Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 (original) (raw)
References
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). ArticleCAS Google Scholar
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinsitide 3-kinase/Akt pathway. Mol. Cell10, 151–162 (2002). ArticleCAS Google Scholar
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol.5, 578–581 (2003). ArticleCAS Google Scholar
Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol.15, 702–713 (2005). ArticleCAS Google Scholar
Dong, J. & Pan, D. J. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev.18, 2479–2484 (2004). ArticleCAS Google Scholar
Hahn-Windgassen, A. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem.280, 32081–32089 (2005). ArticleCAS Google Scholar
Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science277, 99–101 (1997). ArticleCAS Google Scholar
Dennis, P. B. et al. Mammalian TOR, a homeostatic ATP sensor. Science294, 1102–1105 (2001). ArticleCAS Google Scholar
Shimji, A. F., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling: implications for cancer biology. Molecular Cell12, 271–280 (2003). Article Google Scholar
Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biol.4, 699–704 (2002). ArticleCAS Google Scholar
Corradetti, M. N. Inoki, K., Bardeesy, N., Depinho, R. A. & Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev.18, 1533–1538 (2004). ArticleCAS Google Scholar
Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature431, 200–205 (2004). ArticleCAS Google Scholar
Kenerson, H., Dundon, T. A. & Yeung, R. S. Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res.57, 67–75 (2005). ArticleCAS Google Scholar
Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature426, 620 (2003). ArticleCAS Google Scholar
Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell10, 457–468 (2002). ArticleCAS Google Scholar
Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). ArticleCAS Google Scholar
Kim, D.-H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell11, 895–904 (2003). ArticleCAS Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002). ArticleCAS Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004). ArticleCAS Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCAS Google Scholar
Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol.6, 1122–1128 (2004). ArticleCAS Google Scholar
Eng, J., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Mass Spectrom.5, 976–989 (1994). ArticleCAS Google Scholar
Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem.74, 5383–5392 (2002). ArticleCAS Google Scholar
Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol.16, 1–6 (2006). Article Google Scholar
Jacinto, E. et al. Sin1/Mip1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell126, 1–13 (2006). Article Google Scholar
Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem.278, 10189–10194 (2003). ArticleCAS Google Scholar
Singh, A., Chan, J., Chern, J. J. & Choi, K.-W. Genetic interaction of lobe with its modifiers in dorsoventral patterning and growth of the Drosophila eye. Genetics171, 169–183 (2005). ArticleCAS Google Scholar
Tzatsos, A. & Kandror, K. V. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol. Cell. Biol.26, 63–76 (2006). ArticleCAS Google Scholar
Huang, B. & Porter, G. Expression of proline-rich akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta. Pharmacol. Sin.26, 1253–1258 (2005). ArticleCAS Google Scholar
Saito, A. et al. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J. Neurosci.24, 1584–1593 (2004). ArticleCAS Google Scholar