Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 (original) (raw)

References

  1. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).
    Article CAS Google Scholar
  2. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinsitide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).
    Article CAS Google Scholar
  3. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol. 5, 578–581 (2003).
    Article CAS Google Scholar
  4. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).
    Article CAS Google Scholar
  5. Dong, J. & Pan, D. J. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 18, 2479–2484 (2004).
    Article CAS Google Scholar
  6. Hahn-Windgassen, A. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081–32089 (2005).
    Article CAS Google Scholar
  7. Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101 (1997).
    Article CAS Google Scholar
  8. Dennis, P. B. et al. Mammalian TOR, a homeostatic ATP sensor. Science 294, 1102–1105 (2001).
    Article CAS Google Scholar
  9. Shimji, A. F., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling: implications for cancer biology. Molecular Cell 12, 271–280 (2003).
    Article Google Scholar
  10. Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biol. 4, 699–704 (2002).
    Article CAS Google Scholar
  11. Corradetti, M. N. Inoki, K., Bardeesy, N., Depinho, R. A. & Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004).
    Article CAS Google Scholar
  12. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).
    Article CAS Google Scholar
  13. Kenerson, H., Dundon, T. A. & Yeung, R. S. Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res. 57, 67–75 (2005).
    Article CAS Google Scholar
  14. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).
    Article CAS Google Scholar
  15. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).
    Article CAS Google Scholar
  16. Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).
    Article CAS Google Scholar
  17. Kim, D.-H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).
    Article CAS Google Scholar
  18. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).
    Article CAS Google Scholar
  19. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).
    Article CAS Google Scholar
  20. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).
    Article CAS Google Scholar
  21. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. 6, 1122–1128 (2004).
    Article CAS Google Scholar
  22. Eng, J., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Mass Spectrom. 5, 976–989 (1994).
    Article CAS Google Scholar
  23. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).
    Article CAS Google Scholar
  24. Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1–6 (2006).
    Article Google Scholar
  25. Jacinto, E. et al. Sin1/Mip1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 126, 1–13 (2006).
    Article Google Scholar
  26. Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189–10194 (2003).
    Article CAS Google Scholar
  27. Singh, A., Chan, J., Chern, J. J. & Choi, K.-W. Genetic interaction of lobe with its modifiers in dorsoventral patterning and growth of the Drosophila eye. Genetics 171, 169–183 (2005).
    Article CAS Google Scholar
  28. Tzatsos, A. & Kandror, K. V. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol. Cell. Biol. 26, 63–76 (2006).
    Article CAS Google Scholar
  29. Huang, B. & Porter, G. Expression of proline-rich akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta. Pharmacol. Sin. 26, 1253–1258 (2005).
    Article CAS Google Scholar
  30. Saito, A. et al. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J. Neurosci. 24, 1584–1593 (2004).
    Article CAS Google Scholar

Download references