The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions (original) (raw)
References
Tanaka, T. U., Stark, M. J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol.6, 929–942 (2005). ArticleCAS Google Scholar
Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore-microtubule interface. J. Cell Sci.117, 5461–5477 (2004). ArticleCAS Google Scholar
McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol.18, 193–219 (2002). ArticleCAS Google Scholar
Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol.8, 310–318 (1998). ArticleCAS Google Scholar
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol.13, 83–117 (1997). ArticleCAS Google Scholar
Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol.8, 581–585 (2006). ArticleCAS Google Scholar
Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol.157, 199–203 (2002). ArticleCAS Google Scholar
De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev.17, 2902–2921 (2003). ArticleCAS Google Scholar
Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma19, 28–43 (1966). ArticleCAS Google Scholar
McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol.137, 1567–1580 (1997). ArticleCAS Google Scholar
McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell12, 2776–2789 (2001). ArticleCAS Google Scholar
Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol.153, 517–527 (2001). ArticleCAS Google Scholar
Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol.113, 1091–1110 (1991). ArticleCAS Google Scholar
VandenBeldt, K. J. et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr. Biol.16, 1217–1223 (2006). ArticleCAS Google Scholar
Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA102, 5363–5367 (2005). ArticleCAS Google Scholar
Ciferri, C. et al. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem.280, 29088–29095 (2005). ArticleCAS Google Scholar
Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev.18, 2255–2268 (2004). ArticleCAS Google Scholar
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell127, 983–997 (2006). ArticleCAS Google Scholar
Emanuele, M. J., McCleland, M. L., Satinover, D. L. & Stukenberg, P. T. Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol. Biol. Cell16, 4882–4892 (2005). ArticleCAS Google Scholar
DeLuca, J. G. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell16, 519–531 (2005). ArticleCAS Google Scholar
McEwen, B. F., Arena, J. T., Frank, J. & Rieder, C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J. Cell Biol.120, 301–312 (1993). ArticleCAS Google Scholar
McEwen, B. F., Hsieh, C. E., Mattheyses, A. L. & Rieder, C. L. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma107, 366–375 (1998). ArticleCAS Google Scholar
Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol12, 138–143 (2005). ArticleCAS Google Scholar
Westermann, S. et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell17, 277–290 (2005). ArticleCAS Google Scholar
Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma84, 145–158 (1981). ArticleCAS Google Scholar
Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science311, 388–391 (2006). ArticleCAS Google Scholar
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112, 407–421 (2003). ArticleCAS Google Scholar
Okada, M. et al. The CENP–H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol.8, 446–457 (2006). ArticleCAS Google Scholar
Khodjakov, A., Cole, R. W., McEwen, B. F., Buttle, K. F. & Rieder, C. L. Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol.136, 229–240 (1997). ArticleCAS Google Scholar
Feng, J., Huang, H. & Yen, T. J. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma115, 320–329 (2006). ArticleCAS Google Scholar
DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell127, 969–982 (2006). ArticleCAS Google Scholar
McEwen, B. F., Marko, M., Hsieh, C. E. & Mannella, C. Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol.138, 47–57 (2002). Article Google Scholar