Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA (original) (raw)

References

  1. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet. 36, 40–45 (2004).
    Article Google Scholar
  2. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).
    Article CAS Google Scholar
  3. Tupy, J. L. et al. Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 102, 5495–5500 (2005).
    Article CAS Google Scholar
  4. Inagaki, S. et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells 10, 1163–1173 (2005).
    Article CAS Google Scholar
  5. Delon, I., Chanut-Delalande, H. & Payre, F. The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila. Mech. Dev. 120, 747–758 (2003).
    Article CAS Google Scholar
  6. Price, M. H., Roberts, D. M., McCartney, B. M., Jezuit, E. & Peifer, M. Cytoskeletal dynamics and cell signaling during planar polarity establishment in the Drosophila embryonic denticle. J. Cell Sci. 119, 403–415 (2006).
    Article CAS Google Scholar
  7. Walters, J. W., Dilks, S. A. & Dinardo, S. Planar polarization of the denticle field in the Drosophila embryo: roles for myosin II (zipper) and fringe. Dev. Biol. 297, 323–339 (2006).
    Article CAS Google Scholar
  8. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).
    Article CAS Google Scholar
  9. Payre, F., Vincent, A. & Carreno, S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275 (1999).
    Article CAS Google Scholar
  10. Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106 (1996).
    Article CAS Google Scholar
  11. Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).
    Article CAS Google Scholar
  12. Chihara, T., Kato, K., Taniguchi, M., Ng, J. & Hayashi, S. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130, 1419–1428 (2003).
    Article CAS Google Scholar
  13. Beitel, G. J. & Krasnow, M. A. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127, 3271–3282 (2000).
    CAS PubMed Google Scholar
  14. Moussian, B., Soding, J., Schwarz, H. & Nusslein-Volhard, C. Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva of Drosophila melanogaster. Dev. Dyn. 233, 1056–1063 (2005).
    Article CAS Google Scholar
  15. Moussian, B. et al. Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133, 163–171 (2006).
    Article CAS Google Scholar
  16. Luschnig, S., Batz, T., Armbruster, K. & Krasnow, M. A. serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006).
    Article CAS Google Scholar
  17. Savard, J., Marques-Souza, H., Aranda, M. & Tautz, D. A segmentation gene in tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126, 559–569 (2006).
    Article CAS Google Scholar
  18. Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F. & Plaza, S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol. 4, e290 (2006).
    Article Google Scholar
  19. Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004).
    Article CAS Google Scholar
  20. Spradling, A. C. & Rubin, G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347 (1982).
    Article CAS Google Scholar
  21. Bartoszewski, S. & Gibson, J. B. Injecting un-dechrionated eggs of Drosophila melanogaster under ethanol Drosophila Information Newsletter 14 (1994).
    Google Scholar
  22. Stern, D. L. & Sucena, E. in Drosophila Protocols (eds Sullivan, W., Ashburner, M. & Hawley, R. S.) 601–615 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).
    Google Scholar
  23. Nagaso, H., Murata, T., Day, N. & Yokoyama, K. K. Simultaneous detection of RNA and protein by in situ hybridization and immunological staining. J. Histochem. Cytochem. 49, 1177–1182 (2001).
    Article CAS Google Scholar
  24. Patel, N. in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (ed. Lawrence S. B. Goldstein, E. A. F.) 445–488 (Academic Press, San Diego, 1995).
    Google Scholar
  25. Brook, W. J. & Cohen, S. M. Antagonistic interactions between wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila Leg. Science 273, 1373–1377 (1996).
    Article CAS Google Scholar
  26. Tonning, A. et al. A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev. Cell 9, 423–430 (2005).
    Article CAS Google Scholar
  27. Kondo, T., Inagaki, S., Yasuda, K. & Kageyama, Y. Rapid construction of Drosophila RNAi transgenes using pRISE, a P-element-mediated transformation vector exploiting an in vitro recombination system. Genes Genet. Syst. 81, 129–134 (2006).
    Article CAS Google Scholar

Download references