Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex (original) (raw)

References

  1. Hetzer, M. W., Walther, T. C. & Mattaj, I. W. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell. Dev. Biol. 21, 347–380 (2005).
    Article CAS Google Scholar
  2. Dick, T., Surana, U. & Chia, W. Molecular and genetic characterization of SLC1, a putative Saccharomyces cerevisiae homolog of the metazoan cytoplasmic dynein light chain 1. Mol. Gen. Genet. 251, 38–43 (1996).
    CAS PubMed Google Scholar
  3. Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299–306 (2006).
    Article CAS Google Scholar
  4. Schwartz, T. U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15, 221–226 (2005).
    Article CAS Google Scholar
  5. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).
    Article CAS Google Scholar
  6. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).
    Article CAS Google Scholar
  7. Hurwitz, M. E., Strambio-de-Castillia, C. & Blobel, G. Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc. Natl Acad. Sci. USA 95, 11241–11245 (1998).
    Article CAS Google Scholar
  8. Belgareh, N. et al. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell. 9, 3475–3492 (1998).
    Article CAS Google Scholar
  9. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).
    Article CAS Google Scholar
  10. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).
    Article CAS Google Scholar
  11. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: An ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).
    Article CAS Google Scholar
  12. Fan, J. S. et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J. Biol. Chem. 273, 33472–33481 (1998).
    Article CAS Google Scholar
  13. Navarro-Lerida, I. et al. Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics 4, 339–346 (2004).
    Article CAS Google Scholar
  14. Liang, J., Jaffrey, S. R., Guo, W., Snyder, S. H. & Clardy, J. Structure of the PIN/LC8 dimer with a bound peptide. Nature Struct. Biol. 6, 735–740 (1999).
    Article CAS Google Scholar
  15. Fan, J., Zhang, Q., Tochio, H., Li, M. & Zhang, M. Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J. Mol. Biol. 306, 97–108 (2001).
    Article CAS Google Scholar
  16. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).
    Article CAS Google Scholar
  17. Komori, M. et al. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J. 16, 44–53 (1997).
    Article CAS Google Scholar
  18. Doye, V., Wepf, R. & Hurt, E. C. A novel nuclear pore protein Nup133p with distinct roles in poly (A)+ RNA transport and nuclear pore distribution. EMBO J. 13, 6062–6075 (1994).
    Article CAS Google Scholar
  19. Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).
    Article CAS Google Scholar
  20. Nyarko, A. et al. Ionization of His 55 at the dimer interface of dynein light-chain LC8 is coupled to dimer dissociation. Biochemistry 44, 14248–14255 (2005).
    Article CAS Google Scholar
  21. Bailer, S. M., Balduf, C. & Hurt, E. C. The Nsp1p carboxy-terminal domain is organized in functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol. Cell Biol. 21, 7944–7955 (2001).
    Article CAS Google Scholar
  22. Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol. 130, 1263–1273 (1995).
    Article CAS Google Scholar
  23. Gorsch, L. C., Dockendorff, T. C. & Cole, C. N. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J. Cell Biol. 129, 939–955 (1995).
    Article CAS Google Scholar
  24. Miki, F. et al. The 14-kDa dynein light chain-family protein Dlc1 is required for regular oscillatory nuclear movement and efficient recombination during meiotic prophase in fission yeast. Mol. Biol. Cell. 13, 930–946 (2002).
    Article CAS Google Scholar
  25. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell. Biol. 8, 195–208 (2007).
    Article CAS Google Scholar
  26. Bernad, R., van der Velde, H., Fornerod, M. & Pickersgill, H. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol. Cell Biol. 24, 2373–2384 (2004).
    Article CAS Google Scholar
  27. Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).
    Article CAS Google Scholar
  28. Delphin, C., Guan, T., Melchior, F. & Gerace, L. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol. Biol. Cell 8, 2379–2390 (1997).
    Article CAS Google Scholar
  29. Puig, O. et al. New constructs and strategies for efficient PCR-based gene manipulations in yeast. Yeast 14, 1139–1146 (1998).
    Article CAS Google Scholar
  30. Baßler, J. et al. Identification of a 60S pre-ribosomal particle that is closely linked to nuclear export. Mol. Cell 8, 517–529 (2001).
    Article Google Scholar
  31. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).
    Article CAS Google Scholar
  32. Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451 (2005).
    Article CAS Google Scholar
  33. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 1303–1309 (1993).
    Article CAS Google Scholar
  34. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
    Article CAS Google Scholar
  35. Pettersen, E. F. et al. UCSF chimera —a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    Article CAS Google Scholar

Download references