Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex (original) (raw)
References
Hetzer, M. W., Walther, T. C. & Mattaj, I. W. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell. Dev. Biol.21, 347–380 (2005). ArticleCAS Google Scholar
Dick, T., Surana, U. & Chia, W. Molecular and genetic characterization of SLC1, a putative Saccharomyces cerevisiae homolog of the metazoan cytoplasmic dynein light chain 1. Mol. Gen. Genet.251, 38–43 (1996). CASPubMed Google Scholar
Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol.18, 299–306 (2006). ArticleCAS Google Scholar
Schwartz, T. U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol.15, 221–226 (2005). ArticleCAS Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004). ArticleCAS Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCAS Google Scholar
Hurwitz, M. E., Strambio-de-Castillia, C. & Blobel, G. Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc. Natl Acad. Sci. USA95, 11241–11245 (1998). ArticleCAS Google Scholar
Belgareh, N. et al. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell.9, 3475–3492 (1998). ArticleCAS Google Scholar
Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell16, 749–760 (2004). ArticleCAS Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). ArticleCAS Google Scholar
Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: An ancient motor protein involved in multiple modes of transport. J. Neurobiol.58, 189–200 (2004). ArticleCAS Google Scholar
Fan, J. S. et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J. Biol. Chem.273, 33472–33481 (1998). ArticleCAS Google Scholar
Navarro-Lerida, I. et al. Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics4, 339–346 (2004). ArticleCAS Google Scholar
Liang, J., Jaffrey, S. R., Guo, W., Snyder, S. H. & Clardy, J. Structure of the PIN/LC8 dimer with a bound peptide. Nature Struct. Biol.6, 735–740 (1999). ArticleCAS Google Scholar
Fan, J., Zhang, Q., Tochio, H., Li, M. & Zhang, M. Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J. Mol. Biol.306, 97–108 (2001). ArticleCAS Google Scholar
Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J.18, 5778–5788 (1999). ArticleCAS Google Scholar
Komori, M. et al. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J.16, 44–53 (1997). ArticleCAS Google Scholar
Doye, V., Wepf, R. & Hurt, E. C. A novel nuclear pore protein Nup133p with distinct roles in poly (A)+ RNA transport and nuclear pore distribution. EMBO J.13, 6062–6075 (1994). ArticleCAS Google Scholar
Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol.13, 364–372 (2003). ArticleCAS Google Scholar
Nyarko, A. et al. Ionization of His 55 at the dimer interface of dynein light-chain LC8 is coupled to dimer dissociation. Biochemistry44, 14248–14255 (2005). ArticleCAS Google Scholar
Bailer, S. M., Balduf, C. & Hurt, E. C. The Nsp1p carboxy-terminal domain is organized in functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol. Cell Biol.21, 7944–7955 (2001). ArticleCAS Google Scholar
Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol.130, 1263–1273 (1995). ArticleCAS Google Scholar
Gorsch, L. C., Dockendorff, T. C. & Cole, C. N. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J. Cell Biol.129, 939–955 (1995). ArticleCAS Google Scholar
Miki, F. et al. The 14-kDa dynein light chain-family protein Dlc1 is required for regular oscillatory nuclear movement and efficient recombination during meiotic prophase in fission yeast. Mol. Biol. Cell.13, 930–946 (2002). ArticleCAS Google Scholar
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell. Biol.8, 195–208 (2007). ArticleCAS Google Scholar
Bernad, R., van der Velde, H., Fornerod, M. & Pickersgill, H. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol. Cell Biol.24, 2373–2384 (2004). ArticleCAS Google Scholar
Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol.158, 63–77 (2002). ArticleCAS Google Scholar
Delphin, C., Guan, T., Melchior, F. & Gerace, L. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol. Biol. Cell8, 2379–2390 (1997). ArticleCAS Google Scholar
Puig, O. et al. New constructs and strategies for efficient PCR-based gene manipulations in yeast. Yeast14, 1139–1146 (1998). ArticleCAS Google Scholar
Baßler, J. et al. Identification of a 60S pre-ribosomal particle that is closely linked to nuclear export. Mol. Cell8, 517–529 (2001). Article Google Scholar
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J.21, 387–397 (2002). ArticleCAS Google Scholar
Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem.280, 18442–18451 (2005). ArticleCAS Google Scholar
Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J.12, 1303–1309 (1993). ArticleCAS Google Scholar
van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol.116, 17–24 (1996). ArticleCAS Google Scholar
Pettersen, E. F. et al. UCSF chimera —a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCAS Google Scholar