Nucleolar release of Hand1 acts as a molecular switch to determine cell fate (original) (raw)

References

  1. Rossant, J. & Cross, J. C. Placental development: lessons from mouse mutants. Nature Rev. Genet. 2, 538–548 (2001).
    Article CAS Google Scholar
  2. Cross, J. C. et al. Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol. Cell Endocrinol. 187, 207–212 (2002).
    Article CAS Google Scholar
  3. Hughes, M. et al. The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells. Dev. Biol. 271, 26–37 (2004).
    Article CAS Google Scholar
  4. Cross, J. C. et al. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121, 2513–2523 (1995).
    CAS PubMed Google Scholar
  5. Riley, P., Anson-Cartwright, L. & Cross, J. C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat. Genet. 18, 271–275 (1998).
    Article CAS Google Scholar
  6. Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nature Genet. 18, 266–270 (1998).
    Article CAS Google Scholar
  7. Sahgal, N., Canham, L. N., Konno, T., Wolfe, M. W. & Soares, M. J. Modulation of trophoblast stem cell and giant cell phenotypes: analyses using the Rcho-1 cell model. Differentiation 73, 452–462 (2005).
    Article CAS Google Scholar
  8. Scott, I. C., Anson-Cartwright, L., Riley, P., Reda, D. & Cross, J. C. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol. Cell Biol. 20, 530–541 (2000).
    Article CAS Google Scholar
  9. Firulli, B. A., Hadzic, D. B., McDaid, J. R. & Firulli, A. B. The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. J. Biol. Chem. 275, 33567–33573 (2000).
    Article CAS Google Scholar
  10. Hollenberg, S. M., Sternglanz, R., Cheng, P. F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell Biol. 15, 3813–3822 (1995).
    Article CAS Google Scholar
  11. Thebault, S., Gachon, F., Lemasson, I., Devaux, C. & Mesnard, J. M. Molecular cloning of a novel human I-mfa domain-containing protein that differently regulates human T-cell leukemia virus type I and HIV-1 expression. J. Biol. Chem. 275, 4848–4857 (2000).
    Article CAS Google Scholar
  12. Chen, C. M., Kraut, N., Groudine, M. & Weintraub, H. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86, 731–741 (1996).
    Article CAS Google Scholar
  13. Kraut, N., Snider, L., Chen, C. M., Tapscott, S. J. & Groudine, M. Requirement of the mouse I-mfa gene for placental development and skeletal patterning. EMBO J. 17, 6276–6288 (1998).
    Article CAS Google Scholar
  14. Gautier, V. W., Sheehy, N., Duffy, M., Hashimoto, K. & Hall, W. W. Direct interaction of the human I-mfa domain-containing protein, HIC, with HIV-1 Tat results in cytoplasmic sequestration and control of Tat activity. Proc. Natl Acad. Sci. USA 102, 16362–16367 (2005).
    Article CAS Google Scholar
  15. Snider, L. et al. Inhibition of Tcf3 binding by I-mfa domain proteins. Mol. Cell Biol. 21, 1866–1873 (2001).
    Article CAS Google Scholar
  16. Thebault, S., Basbous, J., Gay, B., Devaux, C. & Mesnard, J. M. Sequence requirement for the nucleolar localization of human I-mfa domain-containing protein (HIC p40). Eur. J. Cell Biol. 79, 834–838 (2000).
    Article CAS Google Scholar
  17. Thebault, S. & Mesnard, J. M. How the sequestration of a protein interferes with its mechanism of action: example of a new family of proteins characterized by a particular cysteine-rich carboxy-terminal domain involved in gene expression regulation. Curr. Prot. Pept. Sci. 2, 155–167 (2001).
    Article CAS Google Scholar
  18. Stark, L. A. & Dunlop, M. G. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol. Cell Biol. 25, 5985–6004 (2005).
    Article CAS Google Scholar
  19. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).
    Article CAS Google Scholar
  20. Tao, W. & Levine, A. J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. US A 96, 6937–6941 (1999).
    Article CAS Google Scholar
  21. Weber, J. D. et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. 20, 2517–2528 (2000).
    Article CAS Google Scholar
  22. Lohrum, M. A., Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).
    Article CAS Google Scholar
  23. Datta, A. et al. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J. Biol. Chem. 279, 36698–36707 (2004).
    Article CAS Google Scholar
  24. Sahgal, N., Canham, L. N., Canham, B. & Soares, M. J. Rcho-1 trophoblast stem cells: a model system for studying trophoblast cell differentiation. Methods Mol. Med. 121, 159–178 (2006).
    PubMed Google Scholar
  25. Hamlin, G. P., Lu, X. J., Roby, K. F. & Soares, M. J. Recapitulation of the pathway for trophoblast giant cell differentiation in vitro: stage-specific expression of members of the prolactin gene family. Endocrinology 134, 2390–2396 (1994).
    Article CAS Google Scholar
  26. Faria, T. N. & Soares, M. J. Trophoblast cell differentiation: establishment, characterization, and modulation of a rat trophoblast cell line expressing members of the placental prolactin family. Endocrinology 129, 2895–2906 (1991).
    Article CAS Google Scholar
  27. Parast, M. M., Aeder, S. & Sutherland, A. E. Trophoblast giant-cell differentiation involves changes in cytoskeleton and cell motility. Dev. Biol. 230, 43–60 (2001).
    Article CAS Google Scholar
  28. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).
    Article CAS Google Scholar
  29. Visintin, R., Stegmeier, F. & Amon, A. The role of the polo kinase Cdc5 in controlling Cdc14 localization. Mol. Biol. Cell 14, 4486–4498 (2003).
    Article CAS Google Scholar
  30. Firulli, B. A. et al. PKA, PKC, and the protein phosphatase 2A influence HAND factor function: a mechanism for tissue-specific transcriptional regulation. Mol. Cell 12, 1225–1237 (2003).
    Article CAS Google Scholar
  31. Huang, Z., Traugh, J. A. & Bishop, J. M. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol. Cell Biol. 24, 1582–1594 (2004).
    Article CAS Google Scholar
  32. Centonze, V. E., Firulli, B. A. & Firulli, A. B. Fluorescence resonance energy transfer (FRET) as a method to calculate the dimerization strength of basic helix-loop-helix (bHLH) proteins. Biol. Proced. Online. 6, 78–82 (2004).
    Article CAS Google Scholar
  33. Jaken, S. Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 8, 168–173 (1996).
    Article CAS Google Scholar
  34. Griffioen, G. & Thevelein, J. M. Molecular mechanisms controlling the localisation of protein kinase A. Curr. Genet. 41, 199–207 (2002).
    Article CAS Google Scholar
  35. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).
    Article CAS Google Scholar
  36. Newton, A. C. Regulation of protein kinase C. Curr. Opin. Cell Biol. 9, 161–167 (1997).
    Article CAS Google Scholar
  37. MacAuley, A., Cross, J. C. & Werb, Z. Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol. Biol. Cell 9, 795–807 (1998).
    Article CAS Google Scholar
  38. Fode, C., Motro, B., Yousefi, S., Heffernan, M. & Dennis, J. W. Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc. Natl Acad. Sci. USA 91, 6388–6392 (1994).
    Article CAS Google Scholar
  39. Hudson, J. W. et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441–446 (2001).
    Article CAS Google Scholar
  40. Leung, G. C., Ho, C. S., Blasutig, I. M., Murphy, J. M. & Sicheri, F. Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays. FEBS Lett. 581, 77–83 (2007).
    Article CAS Google Scholar
  41. Ma, G. T. & Linzer, D. I. GATA-2 restricts prolactin-like protein A expression to secondary trophoblast giant cells in the mouse. Biol. Reprod. 63, 570–574 (2000).
    Article CAS Google Scholar
  42. Queralt, E., Lehane, C., Novak, B. & Uhlmann, F. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732 (2006).
    Article CAS Google Scholar
  43. Pederson, T. The plurifunctional nucleolus. Nucleic Acids Res. 26, 3871–3876 (1998).
    Article CAS Google Scholar
  44. Hill, A. A. & Riley, P. R. Differential regulation of Hand1 homodimer and Hand1-E12 heterodimer activity by the cofactor FHL2. Mol. Cell Biol. 24, 9835–9847 (2004).
    Article CAS Google Scholar
  45. Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340 (2003).
    Article CAS Google Scholar
  46. Kunath, T. et al. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nature Biotechnol. 21, 559–561 (2003).
    Article CAS Google Scholar
  47. Kurki, S. et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465–475 (2004).
    Article CAS Google Scholar
  48. Swallow, C. J., Ko, M. A., Siddiqui, N. U., Hudson, J. W. & Dennis, J. W. Sak/Plk4 and mitotic fidelity. Oncogene 24, 306–312 (2005).
    Article CAS Google Scholar
  49. Moorman, A. F., Houweling, A. C., de Boer, P. A. & Christoffels, V. M. Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem. 49, 1–8 (2001).
    Article CAS Google Scholar
  50. Riley, P. R., Gertsenstein, M., Dawson, K. & Cross, J. C. Early exclusion of hand1-deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos. Dev. Biol. 227, 156–168 (2000).
    Article CAS Google Scholar

Download references