Rapid activation of ATM on DNA flanking double-strand breaks (original) (raw)
Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCAS Google Scholar
Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer3, 155–168 (2003). ArticleCAS Google Scholar
Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell118, 9–17 (2004). ArticleCAS Google Scholar
Costanzo, V., Robertson, K. & Gautier, J. Xenopus cell-free extracts to study the DNA damage response. Methods Mol. Biol.280, 213–227 (2004). CASPubMed Google Scholar
Petersen, P. et al. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol. Cell. Biol.26, 1997–2011 (2006). ArticleCAS Google Scholar
You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol.25, 5363–5379 (2005). ArticleCAS Google Scholar
Almouzni, G. & Mechali, M. Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO J.7, 4355–4365 (1988). ArticleCAS Google Scholar
Ladoux, B. et al. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc. Natl Acad. Sci. USA97, 14251–14256 (2000). ArticleCAS Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421, 499–506 (2003). ArticleCAS Google Scholar
Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature443, 222–225 (2006). ArticleCAS Google Scholar
Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell. Biol.1, 179–186 (2000). ArticleCAS Google Scholar
Johnson, S. A., You, Z. & Hunter, T. Monitoring ATM kinase activity in living cells. DNA Repair6, 1277–1284 (2007). ArticleCAS Google Scholar
Goodarzi, A. A. et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J.23, 4451–4461 (2004). ArticleCAS Google Scholar
Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol.5, 255–260 (2003). ArticleCAS Google Scholar
McSherry, T. D. & Mueller, P. R. Xenopus Cds1 is regulated by DNA-dependent protein kinase and ATR during the cell cycle checkpoint response to double-stranded DNA ends. Mol. Cell. Biol.24, 9968–9985 (2004). ArticleCAS Google Scholar
Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell21, 187–200 (2006). ArticleCAS Google Scholar
Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair5, 534–543 (2006). ArticleCAS Google Scholar
Cerosaletti, K., Wright, J. & Concannon, P. Active role for nibrin in the kinetics of atm activation. Mol. Cell. Biol.26, 1691–1699 (2006). ArticleCAS Google Scholar
Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol.7, 675–685 (2005). ArticleCAS Google Scholar
Berkovich, E., Monnat, R. J. Jr. & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol.9, 683–690 (2007). ArticleCAS Google Scholar
Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol.14, 1703–1711 (2004). ArticleCAS Google Scholar
Meek, K., Gupta, S., Ramsden, D. A. & Lees-Miller, S. P. The DNA-dependent protein kinase: the director at the end. Immunol. Rev.200, 132–141 (2004). ArticleCAS Google Scholar
Pazin, M. J., Bhargava, P., Geiduschek, E. P. & Kadonaga, J. T. Nucleosome mobility and the maintenance of nucleosome positioning. Science276, 809–812 (1997). ArticleCAS Google Scholar
Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nature Struct. Mol. Biol.13, 451–457 (2006). Article Google Scholar
Robertson, K., Hensey, C. & Gautier, J. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene18, 7070–7079 (1999). ArticleCAS Google Scholar
Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science308, 551–554 (2005). ArticleCAS Google Scholar
Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell123, 1213–1226 (2005). ArticleCAS Google Scholar
You, Z., Kong, L. & Newport, J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J. Biol. Chem.277, 27088–27093 (2002). ArticleCAS Google Scholar
Hekmat-Nejad, M., You, Z., Yee, M. C., Newport, J. W. & Cimprich, K. A. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol.10, 1565–1573 (2000). ArticleCAS Google Scholar
Dilworth, S. M., Black, S. J. & Laskey, R. A. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell51, 1009–1018 (1987). ArticleCAS Google Scholar
Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol.135, 1685–1700 (1996). ArticleCAS Google Scholar
Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature423, 1013–1018 (2003). ArticleCAS Google Scholar
Blow, J. J., Gillespie, P. J., Francis, D. & Jackson, D. A. Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol.152, 15–25 (2001). ArticleCAS Google Scholar
Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol.140, 1285–1295 (1998). ArticleCAS Google Scholar
Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol.154, 683–690 (2001). ArticleCAS Google Scholar