β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells (original) (raw)
Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nature Rev. Mol. Cell Biol.6, 715–725 (2005). ArticleCAS Google Scholar
Visvader, J. E. & Lindeman, G. J. Mammary stem cells and mammopoiesis. Cancer Res.66, 9798–9801 (2006). ArticleCAS Google Scholar
Smalley, M. & Ashworth, A. Stem cells and breast cancer: A field in transit. Nature Rev.Cancer3, 832–844 (2003). CASPubMed Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCAS Google Scholar
Stingl, J et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006). ArticleCAS Google Scholar
Asselin-Labat, M. L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst.98, 1011–1014 (2006). ArticleCAS Google Scholar
Deugnier, M. A. et al. EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J. Cell Biol.159, 453–463 (2002). ArticleCAS Google Scholar
Deugnier, M. A. et al. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dβ cell line. Dev. Biol.293, 414–425 (2006). ArticleCAS Google Scholar
Faraldo, M. M., Deugnier, M. A., Lukashev, M., Thiery, J. P. & Glukhova, M. A. Perturbation of β1-integrin function alters the development of murine mammary gland. EMBO J.17, 2139–2147 (1998). ArticleCAS Google Scholar
White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell6, 159–170 (2004). ArticleCAS Google Scholar
Li, N. et al. β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J.24, 1942–1953 (2005). ArticleCAS Google Scholar
Naylor, M. J. et al. Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J. Cell Biol.171, 717–728 (2005). ArticleCAS Google Scholar
Sleeman, K. E. et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol.176, 19–26 (2007). ArticleCAS Google Scholar
Gusterson, B. A., Ross, D. T., Heath, V. J. & Stein, T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res.7, 143–148 (2005). ArticleCAS Google Scholar
Ramirez, A. et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis39, 52–57 (2004). ArticleCAS Google Scholar
Teuliere, J. et al. Targeted activation of β-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development132, 267–277 (2005). ArticleCAS Google Scholar
Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J.19, 3990–4003 (2000). ArticleCAS Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). ArticleCAS Google Scholar
Reverte, C. G., Benware, A., Jones, C. W. & LaFlamme, S. E. Perturbing integrin function inhibits microtubule growth from centrosomes, spindle assembly, and cytokinesis. J. Cell Biol.174, 491–497 (2006). ArticleCAS Google Scholar
Fernández-Miñán, A., Martín-Bermudo, M. D. & González-Reyes, A. Integrin signaling regulates spindle orientation in Drosophila to preserve the follicular-epithelium monolayer. Curr. Biol.17, 683–688 (2007). Article Google Scholar
Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell127, 1041–1055 (2006). ArticleCAS Google Scholar
Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol.9, 201–209 (2007). ArticleCAS Google Scholar
Wagner, K. U. et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development129, 1377–1386 (2002). CASPubMed Google Scholar
Matulka, L. A., Triplett, A. A. & Wagner, K. U. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev. Biol.303, 29–44 (2007). ArticleCAS Google Scholar
Gibson, M. C. & Perrimon, N. Apicobasal polarization: epithelial form and function. Curr. Opin. Cell Biol.15, 747–752 (2003). ArticleCAS Google Scholar
Bissell, M. J., Rizki, A. & Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol.15, 753–762 (2003). ArticleCAS Google Scholar
Tanentzapf, G., Devenport, D., Godt, D. & Brown, N. H. Integrin-dependent anchoring of a stem-cell niche Nature Cell Biol.9, 1413–1418 (2007). ArticleCAS Google Scholar
Potocnik, A. J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity12, 653–663 (2000). ArticleCAS Google Scholar
Deome, K. B., Faulkin, Jr., L. J., Bern, H. A. & Blair, P. B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res.19, 515–520 (1959). CASPubMed Google Scholar