Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability (original) (raw)
Kim, V. N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev.20, 1993–1997 (2006). ArticleCAS Google Scholar
O'Donnell K, A. & Boeke, J. D. Mighty Piwis Defend the Germline against Genome Intruders. Cell129, 37–44 (2007). ArticleCAS Google Scholar
Hartig, J. V., Tomari, Y. & Forstemann, K. piRNAs--the ancient hunters of genome invaders. Genes Dev.21, 1707–1713 (2007). ArticleCAS Google Scholar
Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development128, 2823–32 (2001). CASPubMed Google Scholar
Anne, J., Ollo, R., Ephrussi, A. & Mechler, B. M. Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development134, 137–146 (2007). ArticleCAS Google Scholar
Gonsalvez, G. B., Rajendra, T. K., Tian, L. & Matera, A. G. The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr. Biol.16, 1077–1089 (2006). ArticleCAS Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). ArticleCAS Google Scholar
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science315, 1587–1590 (2007). ArticleCAS Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). ArticleCAS Google Scholar
Girard, A. & Hannon, G. J. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol.18, 136–148 (2008). ArticleCAS Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). ArticleCAS Google Scholar
Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics166, 1313–1321 (2004). ArticleCAS Google Scholar
Siomi, M. C., Saito, K. & Siomi, H. How selfish retrotransposons are silenced in Drosophila germline and somatic cells. FEBS Lett.582, 2473–2478 (2008). ArticleCAS Google Scholar
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science316, 744–747 (2007). ArticleCAS Google Scholar
Houwing, S. et al. A Role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell129, 69–82 (2007). ArticleCAS Google Scholar
Krause, C. D. et al. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther.113, 50–87 (2007). ArticleCAS Google Scholar
Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell18, 263–272 (2005). ArticleCAS Google Scholar
Friesen, W. J. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell Biol.21, 8289–300 (2001). ArticleCAS Google Scholar
Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol.11, 1990–1994 (2001). ArticleCAS Google Scholar
Lerner, E. A., Lerner, M. R., Janeway, C. A., Jr & Steitz, J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc. Natl Acad. Sci. USA78, 2737–2741 (1981). ArticleCAS Google Scholar
Brahms, H. et al. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J. Biol. Chem.275, 17122–17129 (2000). ArticleCAS Google Scholar
Boisvert, F. M., Cote, J., Boulanger, M. C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell Proteomics2, 1319–1330 (2003). ArticleCAS Google Scholar
Bowes, J. B. et al. Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res.36, 761–767 (2008). Article Google Scholar
Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nature Struct. Mol. Biol.14, 347–348 (2007). ArticleCAS Google Scholar
Ohara, T. et al. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nature Struct. Mol. Biol.14, 349–350 (2007). ArticleCAS Google Scholar
Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev.21, 1603–1608 (2007). ArticleCAS Google Scholar
Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol.17, 1265–1272 (2007). ArticleCAS Google Scholar
Gonsalvez, G. B. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol.178, 733–740 (2007). ArticleCAS Google Scholar
Gonsalvez, G. B., Praveen, K., Hicks, A. J., Tian, L. & Matera, A. G. Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA14, 878–887 (2008). ArticleCAS Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science313, 320–324 (2006). ArticleCAS Google Scholar
Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development127, 503–514 (2000). CASPubMed Google Scholar
Strome, S. & Lehmann, R. Germ versus soma decisions: lessons from flies and worms. Science316, 392–393 (2007). ArticleCAS Google Scholar
Anne, J. & Mechler, B. M. Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuleen. Development132, 2167–2177 (2005). ArticleCAS Google Scholar
Boswell, R. E. & Mahowald, A. P. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell43, 97–104 (1985). ArticleCAS Google Scholar
Arkov, A. L., Wang, J. Y., Ramos, A. & Lehmann, R. The role of Tudor domains in germline development and polar granule architecture. Development133, 4053–4062 (2006). ArticleCAS Google Scholar
Selenko, P. et al. SMN tudor domain structure and its interaction with the Sm proteins. Nature Struct. Biol.8, 27–31 (2001). ArticleCAS Google Scholar
Cote, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem.280, 28476–28483 (2005). ArticleCAS Google Scholar
Chuma, S. et al. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl Acad. Sci. USA103, 15894–15899 (2006). ArticleCAS Google Scholar
Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A. & Gvozdev, V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev.20, 345–354 (2006). ArticleCAS Google Scholar
Lim, A. K. & Kai, T. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl Acad. Sci. USA104, 6714–6719 (2007). ArticleCAS Google Scholar