Chromosome congression in the absence of kinetochore fibres (original) (raw)

References

  1. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).
    Article CAS Google Scholar
  2. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev Cytol. 265, 111–158 (2008).
    Article CAS Google Scholar
  3. Cai, S., Weaver, L. N., Ems-McClung, S. C. & Walczak, C. E. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol. Biol. Cell 20, 1348–1359 (2009).
    Article CAS Google Scholar
  4. Manning, A. L. & Compton, D. A. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr. Biol. 17, 260–265 (2007).
    Article CAS Google Scholar
  5. DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore–microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002).
    Article CAS Google Scholar
  6. Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357–366 (1997).
    Article CAS Google Scholar
  7. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).
    Article CAS Google Scholar
  8. Nicklas, R. B. & Arana, P. Evolution and the meaning of metaphase. J Cell Sci 102 (Pt 4), 681–690 (1992).
    PubMed Google Scholar
  9. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).
    Article CAS Google Scholar
  10. Maiato, H. & Sunkel, C. E. Kinetochore-microtubule interactions during cell division. Chromosome Res. 12, 585–597 (2004).
    Article CAS Google Scholar
  11. DeLuca, J. G. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).
    Article CAS Google Scholar
  12. Heald, R. & Walczak, C. E. in The Kinetochore: From Molecular Discoveries to Cancer Therapy (eds. De Wulf, P. & Earnshaw, W. C.) 231–268 (Springer Science and Business Media, 2009).
    Google Scholar
  13. Scholey, J. M., Brust-Mascher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003).
    Article CAS Google Scholar
  14. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).
    Article CAS Google Scholar
  15. Sillje, H. H., Nagel, S., Korner, R. & Nigg, E. A. HURP is a Ran-importin β-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr. Biol. 16, 731–742 (2006).
    Article CAS Google Scholar
  16. Wong, J. & Fang, G. HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J. Cell Biol. 173, 879–891 (2006).
    Article CAS Google Scholar
  17. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).
    Article CAS Google Scholar
  18. Bomont, P., Maddox, P., Shah, J. V., Desai, A. B. & Cleveland, D. W. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP.-F. EMBO J. 24, 3927–3939 (2005).
    Article CAS Google Scholar
  19. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).
    Article CAS Google Scholar
  20. Vorozhko, V. V., Emanuele, M. J., Kallio, M. J., Stukenberg, P. T. & Gorbsky, G. J. Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117, 169–179 (2008).
    Article Google Scholar
  21. Kirschner, M. W. & Mitchison, T. Microtubule dynamics. Nature 324, 621 (1986).
    Article CAS Google Scholar
  22. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).
    Article CAS Google Scholar
  23. McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2776–2789 (2001).
    Article CAS Google Scholar
  24. Putkey, F. R. et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP.-E. Dev. Cell 3, 351–365 (2002).
    Article CAS Google Scholar
  25. Weaver, B. A. et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol. 162, 551–563 (2003).
    Article CAS Google Scholar
  26. Ems-McClung, S. C., Zheng, Y. & Walczak, C. E. Importin α/β and Ran–GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15, 46–57 (2004).
    Article CAS Google Scholar
  27. Walczak, C. E., Verma, S. & Mitchison, T. J. XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136, 859–870 (1997).
    Article CAS Google Scholar
  28. Rodriguez, A. & Flemington, E. K. Transfection-mediated cell-cycle signaling: considerations for transient transfection-based cell-cycle studies. Anal. Biochem. 272, 171–181 (1999).
    Article CAS Google Scholar
  29. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).
    Article CAS Google Scholar
  30. Rieder, C. L. & Cassels, G. Correlative light and electron microscopy of mitotic cells in monolayer cultures. Methods Cell Biol. 61, 297–315 (1999).
    Article CAS Google Scholar

Download references