Interplay between Cdh1 and JNK activity during the cell cycle (original) (raw)
Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci.30, 630–641 (2005). ArticleCASPubMed Google Scholar
Gutierrez, G. J. & Ronai, Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci.31, 324–332 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol.16, 55–63 (2006). ArticleCASPubMed Google Scholar
Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev.14, 655–665 (2000). CASPubMedPubMed Central Google Scholar
Pfleger, C. M., Lee, E. & Kirschner, M. W. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev.15, 2396–2407 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol.7, 644–656 (2006). ArticleCASPubMed Google Scholar
Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol.157, 1125–1137 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell11, 1555–1569 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol.9, 227–236 (1999). ArticleCASPubMed Google Scholar
Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science282, 1721–1724 (1998). ArticleCASPubMed Google Scholar
Blanco, M. A., Sanchez-Diaz, A., de Prada, J. M. & Moreno, S. APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J.19, 3945–3955 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reis, A., Levasseur, M., Chang, H. Y., Elliott, D. J. & Jones, K. T. The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep.7, 1040–1045 (2006). ArticleCASPubMedPubMed Central Google Scholar
Miller, J. J. et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev.20, 2410–2420 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat. Cell Biol.4, 358–366 (2002). ArticleCASPubMed Google Scholar
Listovsky, T., Zor, A., Laronne, A. & Brandeis, M. Cdk1 is essential for mammalian cyclosome/APC regulation. Exp. Cell Res.255, 184–191 (2000). ArticleCASPubMed Google Scholar
Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature401, 815–818 (1999). ArticleCASPubMed Google Scholar
Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression. Mol. Cell Biol.21, 3692–3703 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hall, M. C., Warren, E. N. & Borchers, C. H. Multi-kinase phosphorylation of the APC/C activator Cdh1 revealed by mass spectrometry. Cell Cycle3, 1278–1284 (2004). ArticleCASPubMed Google Scholar
Gutierrez, G. J. et al. JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G(2)/M DNA damage checkpoint. J. Biol. Chem.285, 14217–14228 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zur, A. & Brandeis, M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. EMBO J.21, 4500–4510 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gutierrez, G. J. et al. Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat. Cell Biol.8, 1084–1094 (2006). ArticleCASPubMed Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCASPubMed Google Scholar
Pomerening, J. R., Kim, S. Y. & Ferrell, J. E., Jr Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell122, 565–578 (2005). ArticleCASPubMed Google Scholar
Lee, K. & Song, K. Basal c-Jun N-terminal kinases promote mitotic progression through histone H3 phosphorylation. Cell Cycle7, 216–221 (2008). ArticleCASPubMed Google Scholar
Oktay, K., Buyuk, E., Oktem, O., Oktay, M. & Giancotti, F. G. The c-Jun N-terminal kinase JNK functions upstream of Aurora B to promote entry into mitosis. Cell Cycle7, 533–541 (2008). ArticleCASPubMed Google Scholar
Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell2, 709–718 (1998). ArticleCASPubMed Google Scholar
Bembenek, J. & Yu, H. Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. J. Biol. Chem.276, 48237–48242 (2001). ArticleCASPubMed Google Scholar
Alexaki, V. I., Javelaud, D. & Mauviel, A. JNK supports survival in melanoma cells by controlling cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. (2008).
Jaeschke, A. et al. JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell23, 899–911 (2006). ArticleCASPubMed Google Scholar
Chen, Y. R., Wang, X., Templeton, D., Davis, R. J. & Tan, T. H. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation. Duration of JNK activation may determine cell death and proliferation. J. Biol. Chem.271, 31929–31936 (1996). ArticleCASPubMed Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCASPubMed Google Scholar
Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression. Mol. Cell Biol.21, 3692–3703 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gutierrez, G. J. et al. Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nature Cell Biol.8, 1084–1094 (2006). ArticleCASPubMed Google Scholar
Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature428, 194–198 (2004). ArticleCASPubMed Google Scholar
Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J. M. & Dulic, V. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J.23, 2554–2563 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science314, 467–471 (2006). ArticleCASPubMed Google Scholar
Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF(Skp2–Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature428, 190–193 (2004). ArticleCASPubMed Google Scholar
Michael, W. M. & Newport, J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science282, 1886–1889 (1998). ArticleCASPubMed Google Scholar
Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitylated cyclin B1 reveals complex chain topology. Nature Cell Biol.8, 700–710 (2006). ArticleCASPubMed Google Scholar
Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell127, 1401–1413 (2006). ArticleCASPubMed Google Scholar