A spindle-like apparatus guides bacterial chromosome segregation (original) (raw)
References
Lam, H., Schofield, W. B. & Jacobs-Wagner, C. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell124, 1011–1023 (2006). ArticleCAS Google Scholar
Huitema, E., Pritchard, S., Matteson, D., Radhakrishnan, S. K. & Viollier, P. H. Bacterial birth scar proteins mark future flagellum assembly site. Cell124, 1025–1037 (2006). ArticleCAS Google Scholar
Gerdes, K., Moller-Jensen, J. & Bugge Jensen, R. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol.37, 455–466 (2000). ArticleCAS Google Scholar
Mohl, D. A., Easter, J., Jr & Gober, J. W. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol.42, 741–755 (2001). ArticleCAS Google Scholar
Mohl, D. A. & Gober, J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell88, 675–684 (1997). CASPubMed Google Scholar
Toro, E., Hong, S. H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA105, 15435–15440 (2008). ArticleCAS Google Scholar
Bowman, G. R. et al. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol. Microbiol.76, 173–189. ArticleCAS Google Scholar
Bowman G. R. et al. Polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell134, 945–955 (2008). ArticleCAS Google Scholar
Ebersbach G, B. A., Jensen GJ, Jacobs-Wagner C A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell134, 956–968 (2008). Article Google Scholar
Lim, G. E., Derman, A. I. & Pogliano, J. Bacterial DNA segregation by dynamic SopA polymers. Proc. Natl Acad. Sci. USA102, 17658–17663 (2005). ArticleCAS Google Scholar
Bouet, J. Y., Ah-Seng, Y., Benmeradi, N. & Lane, D. Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. Mol. Microbiol.63, 468–481 (2007). ArticleCAS Google Scholar
Fogel, M. A. & Waldor, M. K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev.20, 3269–3282 (2006). ArticleCAS Google Scholar
Hatano, T., Yamaichi, Y. & Niki, H. Oscillating focus of SopA associated with filamentous structure guides partitioning of F plasmid. Mol. Microbiol.64, 1198–1213 (2007). ArticleCAS Google Scholar
Leonard, T. A., Moller-Jensen, J. & Lowe, J. Towards understanding the molecular basis of bacterial DNA segregation. Philos. Trans. R. Soc. Lond. B. Biol. Sci.360, 523–535 (2005). ArticleCAS Google Scholar
Ringgaard, S., van Zon, J., Howard, M. & Gerdes, K. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl Acad. Sci. USA106, 19369–19374 (2009). ArticleCAS Google Scholar
Barilla, D., Rosenberg, M. F., Nobbmann, U. & Hayes, F. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J.24, 1453–1464 (2005). ArticleCAS Google Scholar
Ebersbach, G. et al. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol. Microbiol.61, 1428–1442 (2006). ArticleCAS Google Scholar
Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimmer — a conserved biological switch. EMBO J.24, 270–282 (2005). ArticleCAS Google Scholar
Pratto, F. et al. Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res.36, 3676–3689 (2008). ArticleCAS Google Scholar
Batt, S. M., Bingle, L. E., Dafforn, T. R. & Thomas, C. M. Bacterial genome partitioning: N-terminal domain of IncC protein encoded by broad-host-range plasmid RK2 modulates oligomerisation and DNA binding. J. Mol. Biol.385, 1361–1374 (2009). ArticleCAS Google Scholar
Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA98, 15078–15083 (2001). ArticleCAS Google Scholar
Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol.52, 385–398 (2004). ArticleCAS Google Scholar
Quisel, J. D., Lin, D. C. & Grossman, A. D. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell4, 665–672 (1999). ArticleCAS Google Scholar
Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell4, 673–682 (1999). ArticleCAS Google Scholar
Castaing, J. P., Bouet, J. Y. & Lane, D. F plasmid partition depends on interaction of SopA with non-specific DNA. Mol. Microbiol.70, 1000–1011 (2008). CASPubMed Google Scholar
Barilla, D., Carmelo, E. & Hayes, F. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc. Natl Acad. Sci. USA104, 1811–1816 (2007). ArticleCAS Google Scholar
Easter, J., Jr & Gober, J. W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell10, 427–434 (2002). ArticleCAS Google Scholar
Fung, E., Bouet, J. Y. & Funnell, B. E. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J.20, 4901–4911 (2001). ArticleCAS Google Scholar
Murray, H. & Errington, J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell135, 74–84 (2008). ArticleCAS Google Scholar
Hester, C. M. & Lutkenhaus, J. Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc. Natl Acad. Sci. USA104, 20326–20331 (2007). ArticleCAS Google Scholar
Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell126, 147–162 (2006). ArticleCAS Google Scholar
Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell137, 685–696 (2009). ArticleCAS Google Scholar
Charles, M., Perez, M., Kobil, J. H. & Goldberg, M. B. Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc. Natl Acad. Sci. USA98, 9871–9876 (2001). ArticleCAS Google Scholar
Breier, A. M. & Grossman, A. D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol.64, 703–718 (2007). ArticleCAS Google Scholar
Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. Science283, 546–549 (1999). ArticleCAS Google Scholar
Fiebig, A., Keren, K. & Theriot, J. A. Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol.60, 1164–1178 (2006). ArticleCAS Google Scholar
Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA101, 9257–9262 (2004). ArticleCAS Google Scholar
Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol.20, 53–63 (2008). ArticleCAS Google Scholar
Deich, J., Judd, E. M., McAdams, H. H. & Moerner, W. E. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc. Natl Acad. Sci. USA101, 15921–15926 (2004). ArticleCAS Google Scholar
Biteen, J. S. et al. Super-resolution imaging in live Caulobacter crescentus cells using photo-switchable EYFP. Nature Methods (2008).
Thanbichler, M., Iniesta, A.A., Shapiro, L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res.35, e137 (2007). Article Google Scholar