Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments (original) (raw)

References

  1. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  2. Insinna, C., Pathak, N., Perkins, B., Drummond, I. & Besharse, J. C. The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev. Biol. 316, 160–170 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  3. Mesland, D. A., Hoffman, J. L., Caligor, E. & Goodenough, U. W. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J. Cell Biol. 84, 599–617 (1980).
    Article CAS PubMed Google Scholar
  4. Moran, D. T., Rowley, J. C. 3rd, Jafek, B. W. & Lovell, M. A. The fine structure of the olfactory mucosa in man. J. Neurocytol. 11, 721–746 (1982).
    Article CAS PubMed Google Scholar
  5. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutantsensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).
    Article CAS PubMed Google Scholar
  6. Wang, Q., Pan, J. & Snell, W. J. Intraflagellar transport particles participatedirectly in cilium-generated signaling in Chlamydomonas. Cell 125, 549–562 (2006).
    Article CAS PubMed Google Scholar
  7. Cole, D. G. et al. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268–270 (1993).
    Article CAS PubMed Google Scholar
  8. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  9. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  10. Shakir, M. A., Fukushige, T., Yasuda, H., Miwa, J. & Siddiqui, S. S. C. elegans osm-3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein. Neuroreport 4, 891–894 (1993).
    Article CAS PubMed Google Scholar
  11. Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85, 23–61 (2008).
    Article CAS PubMed Google Scholar
  12. Hao, L & Scholey, J. M. Intraflagellar transport at a glance. J. Cell Sci. 122, 889–892 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  13. Lucker, B. F., Miller, M. S., Dziedzic, S. A., Blackmarr, P. T. & Cole, D. G. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J. Biol. Chem. 285, 21508–21518 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  14. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 187, 135–148 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  15. Johnson, K. A. & Rosenbaum, J. L. Polarity of flagellar assembly in Chlamydomonas. J. Cell Biol. 119, 1605–1611 (1992).
    Article CAS PubMed Google Scholar
  16. Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  17. Engel, B. D., Ludington, W. B. & Marshall, W. F. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187, 81–89 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  18. Shah, J. V. & Cleveland, D. W. Slow axonal transport: fast motors in the slow lane. Curr. Opin. Cell Biol. 14, 58–62 (2002).
    Article CAS PubMed Google Scholar
  19. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature 436, 583–587 (2005).
    Article CAS PubMed Google Scholar
  20. Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035–1045 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  21. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109–1113 (2004).
    Article CAS PubMed Google Scholar
  22. Burghoorn, J. et al. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 7157–7162 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  23. Jenkins, P. M. et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr. Biol. 16, 1211–1216 (2006).
    Article CAS PubMed Google Scholar
  24. Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  25. Inglis, P. N., Ou, G., Leroux, M. R. & Scholey, J. M. The sensory cilia of Caenorhabditis elegans. WormBook 1–22 (2007).
  26. Fan, Z. C. et al. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol. Biol. Cell 21, 2696–2706 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  27. Ou, G. et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell 18, 1554–1569 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  28. Kobayashi, T., Gengyo-Ando, K., Ishihara, T., Katsura, I. & Mitani, S. IFT-81 and IFT-74 are required for intraflagellar transport in C. elegans. Genes Cells 12, 593–602 (2007).
    Article CAS PubMed Google Scholar
  29. Bell, L. R., Stone, S., Yochem, J., Shaw, J. E. & Herman, R. K. The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1. Genetics 173, 1275–1286 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  30. Hou, Y. et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176, 653–665 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  31. Hurd, D. D., Miller, R. M., Nunez, L. & Portman, D. S. Specific α- and β-tubulin isotypes optimize the functions of sensory cilia in Caenorhabditis elegans. Genetics 185, 883–896 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  32. Wright, A. J. & Hunter, C. P. Mutations in a β-tubulin disrupt spindle orientation and microtubule dynamics in the early Caenorhabditis elegans embryo. Mol. Biol. Cell 14, 4512–4525 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Lowe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001).
    Article CAS PubMed Google Scholar
  34. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J. 29, 1167–1175 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  35. Efimenko, E. et al. Analysis of xbx genes in C. elegans. Development 132, 1923–1934 (2005).
    Article CAS PubMed Google Scholar
  36. Schroder, J. M., Schneider, L., Christensen, S. T. & Pedersen, L. B. EB1 is required for primary cilia assembly in fibroblasts. Curr. Biol. 17, 1134–1139 (2007).
    Article CAS PubMed Google Scholar
  37. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  38. Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 15, 1695–1699 (2005).
    Article CAS PubMed Google Scholar
  39. Jaglin, X. H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41, 746–752 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  40. Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  41. Nielsen, M. G., Turner, F. R., Hutchens, J. A. & Raff, E. C. Axoneme-specific β-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr. Biol. 11, 529–533 (2001).
    Article CAS PubMed Google Scholar
  42. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).
    Article CAS PubMed Google Scholar
  43. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  44. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).
    Article CAS PubMed Google Scholar
  45. Yoshimura, S., Murray, J. I., Lu, Y., Waterston, R. H. & Shaham, S. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 135, 2263–2275 (2008).
    Article CAS PubMed Google Scholar
  46. Hao, L., Acar, S., Evans, J., Ou, G. & Scholey, J. M. Analysis of intraflagellar transport in C. elegans sensory cilia. Methods Cell Biol. 93, 235–266 (2009).
    Article CAS PubMed Google Scholar
  47. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).
    CAS PubMed PubMed Central Google Scholar
  48. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol. Biol. Cell 10, 345–360 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  49. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
    Article CAS PubMed Google Scholar
  50. Cheerambathur, D. K., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. J. Cell Biol. 182, 429–436 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  51. Mullineaux, C. W., Nenninger, A., Ray, N. & Robinson, C. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006).
    Article CAS PubMed PubMed Central Google Scholar

Download references