USP15 is a deubiquitylating enzyme for receptor-activated SMADs (original) (raw)

References

  1. Wu, M. Y. & Hill, C. S. Tgf-β superfamily signaling in embryonic development and homeostasis. Dev. Cell 16, 329–343 (2009).
    Article CAS Google Scholar
  2. Wrana, J. L., Ozdamar, B., Le Roy, C. & Benchabane, H. Signaling Receptors of the TGF β family (Cold Spring Harbor Laboratory Press, 2008).
    Google Scholar
  3. Itoh, S. & ten Dijke, P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19, 176–184 (2007).
    Article CAS Google Scholar
  4. Lonn, P., Moren, A., Raja, E., Dahl, M. & Moustakas, A. Regulating the stability of TGFβ receptors and Smads. Cell Res. 19, 21–35 (2009).
    Article Google Scholar
  5. Salmena, L. & Pandolfi, P. P. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat. Rev. Cancer 7, 409–413 (2007).
    Article CAS Google Scholar
  6. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).
    Article CAS Google Scholar
  7. Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136, 123–135 (2009).
    Article CAS Google Scholar
  8. Baker, R. T., Wang, X. W., Woollatt, E., White, J. A. & Sutherland, G. R. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics 59, 264–274 (1999).
    Article CAS Google Scholar
  9. Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene 23, 4232–4237 (2004).
    Article CAS Google Scholar
  10. Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001).
    CAS PubMed Google Scholar
  11. Niehrs, C. Regionally specific induction by the Spemann–Mangold organizer. Nat. Rev. Genet. 5, 425–434 (2004).
    CAS PubMed Google Scholar
  12. De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171–181 (2000).
    Article CAS Google Scholar
  13. Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993 (2007).
    Article CAS Google Scholar
  14. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).
    Article CAS Google Scholar
  15. Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. & Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 25, 441–454 (2007).
    Article CAS Google Scholar
  16. Hill, C. S. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 19, 36–46 (2009).
    Article CAS Google Scholar
  17. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286, 771–774 (1999).
    Article CAS Google Scholar
  18. Shi, Y. Structural insights on Smad function in TGFβ signaling. Bioessays 23, 223–232 (2001).
    Article CAS Google Scholar
  19. Chai, J. et al. Features of a Smad3 MH1–DNA complex. Roles of water and zinc in DNA binding. J. Biol. Chem. 278, 20327–20331 (2003).
    Article CAS Google Scholar
  20. Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12, 342–349 (2011).
    Article CAS Google Scholar
  21. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).
    Article CAS Google Scholar
  22. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002).
    Article CAS Google Scholar
  23. Dai, F., Lin, X., Chang, C. & Feng, X. H. Nuclear export of Smad2 and Smad3by RanBP3 facilitates termination of TGF-β signaling. Dev. Cell 16, 345–357 (2009).
    Article CAS Google Scholar
  24. Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139, 757–769 (2009).
    Article CAS Google Scholar
  25. Dupont, S. et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121, 87–99 (2005).
    Article CAS Google Scholar
  26. Morsut, L. et al. Negative control of Smad activity by ectodermin/Tif1γ patterns the mammalian embryo. Development 137, 2571–2578 (2010).
    Article CAS Google Scholar
  27. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role ofnuclear export signal of MAP kinase kinase. J. Biol. Chem. 272, 32642–32648 (1997).
    Article CAS Google Scholar
  28. Levy, L. et al. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol. Cell Biol. 27, 6068–6083 (2007).
    Article CAS Google Scholar
  29. Cordenonsi, M. et al. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 315, 840–843 (2007).
    Article CAS Google Scholar
  30. Martello, G. et al. MicroRNA control of Nodal signalling. Nature 449, 183–188 (2007).
    Article CAS Google Scholar
  31. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).
    Article CAS Google Scholar
  32. Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).
    Article CAS Google Scholar
  33. Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol. Cell 36, 457–468 (2009).
    Article CAS Google Scholar
  34. Cordenonsi, M et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113, 301–314 (2003).
    Article CAS Google Scholar
  35. Fontemaggi, G. et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol. Cell Biol. 21, 8461–8470 (2001).
    Article CAS Google Scholar

Download references