USP15 is a deubiquitylating enzyme for receptor-activated SMADs (original) (raw)
References
Wu, M. Y. & Hill, C. S. Tgf-β superfamily signaling in embryonic development and homeostasis. Dev. Cell16, 329–343 (2009). ArticleCAS Google Scholar
Wrana, J. L., Ozdamar, B., Le Roy, C. & Benchabane, H. Signaling Receptors of the TGF β family (Cold Spring Harbor Laboratory Press, 2008). Google Scholar
Itoh, S. & ten Dijke, P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol.19, 176–184 (2007). ArticleCAS Google Scholar
Lonn, P., Moren, A., Raja, E., Dahl, M. & Moustakas, A. Regulating the stability of TGFβ receptors and Smads. Cell Res.19, 21–35 (2009). Article Google Scholar
Salmena, L. & Pandolfi, P. P. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat. Rev. Cancer7, 409–413 (2007). ArticleCAS Google Scholar
Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell123, 773–786 (2005). ArticleCAS Google Scholar
Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell136, 123–135 (2009). ArticleCAS Google Scholar
Baker, R. T., Wang, X. W., Woollatt, E., White, J. A. & Sutherland, G. R. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics59, 264–274 (1999). ArticleCAS Google Scholar
Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene23, 4232–4237 (2004). ArticleCAS Google Scholar
Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol.11, S44–S51 (2001). CASPubMed Google Scholar
Niehrs, C. Regionally specific induction by the Spemann–Mangold organizer. Nat. Rev. Genet.5, 425–434 (2004). CASPubMed Google Scholar
De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet.1, 171–181 (2000). ArticleCAS Google Scholar
Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell131, 980–993 (2007). ArticleCAS Google Scholar
Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature400, 687–693 (1999). ArticleCAS Google Scholar
Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. & Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell25, 441–454 (2007). ArticleCAS Google Scholar
Hill, C. S. Nucleocytoplasmic shuttling of Smad proteins. Cell Res.19, 36–46 (2009). ArticleCAS Google Scholar
Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science286, 771–774 (1999). ArticleCAS Google Scholar
Shi, Y. Structural insights on Smad function in TGFβ signaling. Bioessays23, 223–232 (2001). ArticleCAS Google Scholar
Chai, J. et al. Features of a Smad3 MH1–DNA complex. Roles of water and zinc in DNA binding. J. Biol. Chem.278, 20327–20331 (2003). ArticleCAS Google Scholar
Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep.12, 342–349 (2011). ArticleCAS Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature383, 691–696 (1996). ArticleCAS Google Scholar
Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell10, 283–294 (2002). ArticleCAS Google Scholar
Dai, F., Lin, X., Chang, C. & Feng, X. H. Nuclear export of Smad2 and Smad3by RanBP3 facilitates termination of TGF-β signaling. Dev. Cell16, 345–357 (2009). ArticleCAS Google Scholar
Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell139, 757–769 (2009). ArticleCAS Google Scholar
Dupont, S. et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell121, 87–99 (2005). ArticleCAS Google Scholar
Morsut, L. et al. Negative control of Smad activity by ectodermin/Tif1γ patterns the mammalian embryo. Development137, 2571–2578 (2010). ArticleCAS Google Scholar
Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role ofnuclear export signal of MAP kinase kinase. J. Biol. Chem.272, 32642–32648 (1997). ArticleCAS Google Scholar
Levy, L. et al. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol. Cell Biol.27, 6068–6083 (2007). ArticleCAS Google Scholar
Cordenonsi, M. et al. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science315, 840–843 (2007). ArticleCAS Google Scholar
Martello, G. et al. MicroRNA control of Nodal signalling. Nature449, 183–188 (2007). ArticleCAS Google Scholar
Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol.4, 33–41 (2008). ArticleCAS Google Scholar
Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell137, 87–98 (2009). ArticleCAS Google Scholar
Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol. Cell36, 457–468 (2009). ArticleCAS Google Scholar
Cordenonsi, M et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell113, 301–314 (2003). ArticleCAS Google Scholar
Fontemaggi, G. et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol. Cell Biol.21, 8461–8470 (2001). ArticleCAS Google Scholar