Homeostatic control of recombination is implemented progressively in mouse meiosis (original) (raw)
References
Hassold, T., Hall, H. & Hunt, P. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet.16 (Spec No. 2), R203–R208 (2007). ArticleCAS Google Scholar
Keeney, S. in Recombination and Meiosis (eds Egel, R. & Lankenau, D-H.) 81–123 (Springer, 2007). Google Scholar
Chen, S. Y. et al. Global analysis of the meiotic crossover landscape. Dev. Cell15, 401–415 (2008). ArticleCAS Google Scholar
Hillers, K. J. & Villeneuve, A. M. Chromosome-wide control of meiotic crossing over in C. elegans. Curr. Biol.13, 1641–1647 (2003). ArticleCAS Google Scholar
Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell126, 285–295 (2006). ArticleCAS Google Scholar
Roig, I. & Keeney, S. Probing meiotic recombination decisions. Dev. Cell15, 331–332 (2008). ArticleCAS Google Scholar
Youds, J. L. et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science327, 1254–1258 (2010). ArticleCAS Google Scholar
Rosu, S., Libuda, D. E. & Villeneuve, A. M. Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number. Science334, 1286–1289 (2011). ArticleCAS Google Scholar
Jones, G. H. & Franklin, F. C. Meiotic crossing-over: obligation and interference. Cell126, 246–248 (2006). ArticleCAS Google Scholar
Cohen, P. E., Pollack, S. E. & Pollard, J. W. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr. Rev.27, 398–426 (2006). ArticleCAS Google Scholar
Anderson, L. K., Reeves, A., Webb, L. M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics151, 1569–1579 (1999). CASPubMedPubMed Central Google Scholar
Holloway, J. K., Booth, J., Edelmann, W., McGowan, C. H. & Cohen, P. E. MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis. PLoS Genet.4, e1000186 (2008). Article Google Scholar
Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell6, 989–998 (2000). ArticleCAS Google Scholar
Kauppi, L. et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science331, 916–920 (2011). ArticleCAS Google Scholar
Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet.27, 271–276 (2001). ArticleCAS Google Scholar
Larocque, J. R. & Jasin, M. Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol. Cell Biol.30, 1887–1897 (2010). ArticleCAS Google Scholar
Zhang, L., Kleckner, N. E., Storlazzi, A. & Kim, K. P. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl Acad. Sci. USA108, 20036–20041 (2011). ArticleCAS Google Scholar
Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA101, 12592–12597 (2004). ArticleCAS Google Scholar
Stahl, F. W. & Foss, H. M. A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae. Genetics186, 515–536 (2010). ArticleCAS Google Scholar
de Boer, E., Stam, P., Dietrich, A. J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA103, 9607–9612 (2006). ArticleCAS Google Scholar
Cole, F., Keeney, S. & Jasin, M. Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev.24, 1201–1207 (2010). ArticleCAS Google Scholar
Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature454, 479–485 (2008). ArticleCAS Google Scholar
Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell94, 387–398 (1998). ArticleCAS Google Scholar
Barchi, M. et al. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet.4, e1000076 (2008). Article Google Scholar
Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature479, 237–240 (2011). ArticleCAS Google Scholar
Goldfarb, T. & Lichten, M. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLoS Biol.8, e1000520 (2010). Article Google Scholar
Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell139, 73–86 (2009). ArticleCAS Google Scholar
Cole, F., Keeney, S. & Jasin, M. Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. Mol. Cell39, 700–710 (2010). ArticleCAS Google Scholar
Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science319, 1395–1398 (2008). ArticleCAS Google Scholar
Baker, S. M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet.13, 336–342 (1996). ArticleCAS Google Scholar
de Boer, E., Dietrich, A. J., Hoog, C., Stam, P. & Heyting, C. Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis. J. Cell Sci.120, 731–736 (2007). ArticleCAS Google Scholar
Koehler, K. E., Schrump, S. E., Cherry, J. P., Hassold, T. J. & Hunt, P. A. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr. Biol.16, R579–R580 (2006). ArticleCAS Google Scholar
Ferguson, K. A., Leung, S., Jiang, D. & Ma, S. Distribution of MLH1 foci and inter-focal distances in spermatocytes of infertile men. Hum. Reprod.24, 1313–1321 (2009). ArticleCAS Google Scholar
Lenzi, M. L. et al. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis i in human oocytes. Am. J. Hum. Genet.76, 112–127 (2005). ArticleCAS Google Scholar
Bellani, M. A., Boateng, K. A., McLeod, D. & Camerini-Otero, R. D. The expression profile of the major mouse SPO11 isoforms indicates that SPO11β introduces double strand breaks and suggests that SPO11α has an additional role in prophase in both spermatocytes and oocytes. Mol. Cell Biol.30, 4391–4403 (2010). ArticleCAS Google Scholar
Heyting, C. & Dietrich, A. J. Meiotic chromosome preparation and protein labeling. Methods Cell Biol.35, 177–202 (1991). ArticleCAS Google Scholar
Dray, E. et al. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1). Proc. Natl Acad. Sci. USA108, 3560–3565 (2011). ArticleCAS Google Scholar
Roig, I. et al. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet.6, e1001062 (2010). Article Google Scholar
Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature436, 1053–1057 (2005). ArticleCAS Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Lawrence Erlbaum Associates, Inc., 1988). Google Scholar