Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCAS Google Scholar
Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol.9, 201–209 (2007). ArticleCAS Google Scholar
Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006). ArticleCAS Google Scholar
Stingl, J., Raouf, A., Eirew, P. & Eaves, C. J. Deciphering the mammary epithelial cell hierarchy. Cell Cycle5, 1519–1522 (2006). ArticleCAS Google Scholar
Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res8, R7 (2006). Article Google Scholar
Villadsen, R. et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol.177, 87–101 (2007). ArticleCAS Google Scholar
Visvader, J. E. & Lindeman, G. J. The unmasking of novel unipotent stem cells in the mammary gland. EMBO J.30, 4858–4859 (2011). ArticleCAS Google Scholar
Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature479, 189–193 (2011). ArticleCAS Google Scholar
Artavanis-Tsakonas, S. & Muskavitch, M. A. Notch: the past, the present, and the future. Curr. Top. Dev. Biol.92, 1–29 (2010). ArticleCAS Google Scholar
Politi, K. et al. Notch in mammary gland development and breast cancer. Semin. Cancer Biol.5, 341–7 (2004). Article Google Scholar
Chiba, S. Notch signaling in stem cell systems. Stem Cells24, 2437–2447 (2006). ArticleCAS Google Scholar
Bouras, T. et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell3, 429–441 (2008). ArticleCAS Google Scholar
Buono, K. D. et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev. Biol.293, 565–580 (2006). ArticleCAS Google Scholar
Raouf, A. et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell3, 109–118 (2008). ArticleCAS Google Scholar
Yalcin-Ozuysal, O. et al. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ.17, 1600–1612 (2010). ArticleCAS Google Scholar
Raafat, A. et al. Expression of Notch receptors, ligands, and target genes during development of the mouse mammary gland. J. Cell. Physiol.226, 1940–1952 (2011). ArticleCAS Google Scholar
O’Neill, C. F. et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am. J. Pathol.171, 1023–1036 (2007). Article Google Scholar
Parr, C., Watkins, G. & Jiang, W. G. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int. J. Mole. Med.14, 779–786 (2004). CAS Google Scholar
Florena, A. M. et al. Associations between Notch-2, Akt-1 and HER2/neuexpression in invasive human breast cancer: a tissue microarray immunophenotypic analysis on 98 patients. Pathobiol.: J. Immunopathol. Mol. Cell. Biol.74, 317–322 (2007). ArticleCAS Google Scholar
Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Gene.41, 579–584 (2009). ArticleCAS Google Scholar
Fu, Y. P. et al. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations. Mol. Cancer9, 113 (2010). Article Google Scholar
Robinson, D. R. et al. Functionally recurrent rearrangements of theMAST kinase and Notch gene families in breast cancer. Nat. Med.17, 1646–1651 (2011). ArticleCAS Google Scholar
Fre, S. et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PloS One6, e25785 (2011). ArticleCAS Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Gene.21, 70–71 (1999). ArticleCAS Google Scholar
Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol.19, 746–750 (2001). ArticleCAS Google Scholar
Chen, L. H. & Bissell, M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul.1, 45–54 (1989). ArticleCAS Google Scholar
Keller, P. J., Arendt, L. M. & Kuperwasser, C. Stem cell maintenance of the mammary gland: it takes two. Cell Stem Cell9, 496–497 (2011). ArticleCAS Google Scholar
Visvader, J. E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Gene. Dev.23, 2563–2577 (2009). ArticleCAS Google Scholar
Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development128, 3117–3131 (2001). CASPubMedPubMed Central Google Scholar
Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol.162, 1123–1133 (2003). ArticleCAS Google Scholar
Sakai, T., Larsen, M. & Yamada, K. M. Fibronectin requirement in branching morphogenesis. Nature423, 876–881 (2003). ArticleCAS Google Scholar
Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science314, 298–300 (2006). ArticleCAS Google Scholar
Sternlicht, M. D., Kouros-Mehr, H., Lu, P. & Werb, Z. Hormonal and local control of mammary branching morphogenesis. Diff.; Res. Biol. Diversity74, 365–381 (2006). ArticleCAS Google Scholar
Wagner, K. U. et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development129, 1377–1386 (2002). CASPubMed Google Scholar
Oakes, S. R. et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Gene. Dev.22, 581–586 (2008). ArticleCAS Google Scholar
Oliver, C. H., Khaled, W. T., Frend, H., Nichols, J. & Watson, C. J. The Stat6-regulated KRAB domain zinc finger protein Zfp157 regulates the balance of lineages in mammary glands and compensates for loss of Gata-3. Gene. Dev.26, 1086–1097 (2012). ArticleCAS Google Scholar
Smith, G. H. & Chepko, G. Mammary epithelial stem cells. Microsc. Res. Techn.52, 190–203 (2001). ArticleCAS Google Scholar