SMIF, a Smad4-interacting protein that functions as a co-activator in TGFβ signalling (original) (raw)
Attisano, L. & Wrana, J. L. Smads as transcriptional co-modulators. Curr. Opin. Cell Biol.12, 235–243 (2000). ArticleCASPubMed Google Scholar
Massague, J., Blain, S. W. & Lo, R. S. TGFβ signalling in growth control, cancer, and heritable disorders. Cell103, 295–309 (2000). ArticleCASPubMed Google Scholar
Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390, 465–471 (1997). ArticleCASPubMed Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature383, 691–696. (1996). ArticleCASPubMed Google Scholar
Verschueren, K. et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′ -CACCT sequences in candidate target genes. J. Biol. Chem.274, 20489–20498 (1999). ArticleCASPubMed Google Scholar
Wotton, D., Lo, R. S., Lee, S. & Massague, J. A Smad transcriptional corepressor. Cell97, 29–39 (1999). ArticleCASPubMed Google Scholar
Shioda, T. et al. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl Acad. Sci. USA95, 9785–9790 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signalling pathways. Cell100, 229–240 (2000). ArticleCASPubMed Google Scholar
Feng, X. H., Zhang, Y., Wu, R. Y. & Derynck, R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are co-activators for smad3 in TGF-β-induced transcriptional activation. Genes Dev.12, 2153–2163 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, K., Bourillot, P.-Y., Nielsen, S. J., Zorn, A. M. & Gurdon, J. B. Swift is a novel BRCT domain co-activator of Smad2 in Transforming Growth Factor β signalling. Mol. Cell Biol.21, 3901–3912 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pouponnot, C., Jayaraman, L. & Massague, J. Physical and functional interaction of SMADs and p300/CBP. J. Biol. Chem.273, 22865–22868 (1998). ArticleCASPubMed Google Scholar
Itoh, S., Ericsson, J., Nishikawa, J., Heldin, C. H. & ten Dijke, P. The transcriptional co-activator P/CAF potentiates TGF-β/Smad signalling. Nucleic Acids Res.28: 4291–4298 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signalling by the SnoN oncoprotein. Science286, 771–774 (1999). ArticleCASPubMed Google Scholar
Lange, D. et al. Expression of TGF-b related Smad proteins in human epithelial skin tumors. Int. J. Oncol.14, 1049–1056 (1999). CASPubMed Google Scholar
Liu, F., Pouponnot, C. & Massague, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev.11, 3157–3167 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zhou, S. et al. Targeted deletion of Smad4 shows it is required for transforming growth factor β and activin signalling in colorectal cancer cells. Proc. Natl Acad. Sci. USA95, 2412–2416 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). ArticlePubMed Google Scholar
de Caestecker, M. P. et al. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J. Biol. Chem.275, 2115–2122 (2000). ArticleCASPubMed Google Scholar
Goldman, P. S., Tran, V. K. & Goodman, R. H. The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog. Horm. Res.52, 103–119 (1997). CASPubMed Google Scholar
Shikama, N., Lyon, J. & La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol.7, 230–236 (1997). ArticleCAS Google Scholar
Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature381, 620–623 (1996). ArticleCASPubMed Google Scholar
Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L. & Attisano, L. Smad2 and Smad3 positively and negatively regulate TGF b-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell2, 109–120 (1998). ArticleCASPubMed Google Scholar
Pertovaara, L. et al. Enhanced jun gene expression is an early genomic response to transforming growth factor β stimulation. Mol. Cell Biol.9, 1255–1262 (1989). ArticleCASPubMedPubMed Central Google Scholar
Jonk, L. J., Itoh, S., Heldin, C. H., ten Dijke, P. & Kruijer, W. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem.273, 21145–21152 (1998). ArticleCASPubMed Google Scholar
Marazzi, G., Wang, Y. & Sassoon, D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev. Biol.186, 127–138 (1997). ArticleCASPubMed Google Scholar
Phippard, D. J. et al. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development122, 2729–2737 (1996). CASPubMed Google Scholar
Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet.26, 216–220 (2000). ArticleCASPubMed Google Scholar
Lele, Z., Bakkers, J. & Hammerschmidt, M. Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis30, 190–194 (2001). ArticleCASPubMed Google Scholar
Solnica-Krezel, L. Pattern formation in zebrafish – fruitful liaisons between embryology and genetics. Curr. Top. Dev. Biol.41, 1–35 (1999). CASPubMed Google Scholar
Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development. Nature403, 385–389 (2000). ArticleCASPubMed Google Scholar
Davidson, A. J. & Zon, L. I. Turning mesoderm into blood: the formation of hematopoietic stem cells during embryogenesis. Curr. Top. Dev. Biol.50, 45–60 (2000). ArticleCASPubMed Google Scholar
de Caestecker, M. P. et al. Characterization of functional domains within Smad4/DPC4. J. Biol. Chem.272, 13690–13696 (1997). ArticleCASPubMed Google Scholar
Shen, X. et al. TGF-b-induced phosphorylation of Smad3 regulates its interaction with co-activator p300/CREB-binding protein. Mol. Biol. Cell9, 3309–3319 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nishihara, A. et al. Role of p300, a transcriptional co-activator, in signalling of TGF-β. Genes Cells3, 613–623 (1998). ArticleCASPubMed Google Scholar
Yahata, T. et al. The MSG1 non-DNA-binding transactivator binds to the p300/CBP co-activators, enhancing their functional link to the Smad transcription factors. J. Biol. Chem.275, 8825–8834 (2000). ArticleCASPubMed Google Scholar
Shioda, T., Fenner, M. H. & Isselbacher, K. J. Msg1, a novel melanocyte-specific gene, encodes a nuclear protein and is associated with pigmentation. Proc. Natl Acad. Sci. USA93, 12298–12303 (1996). ArticleCASPubMedPubMed Central Google Scholar
Dunwoodie, S. L., Rodriguez, T. A. & Beddington, R. S. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech. Dev.72, 27–40 (1998). ArticleCASPubMed Google Scholar
Bai, R. Y. et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene17, 941–948 (1998). ArticleCASPubMed Google Scholar
Boyd, F. T. & Massague, J. Transforming growth factor-b inhibition of epithelial cell proliferation linked to the expression of a 53-kDa membrane receptor. J. Biol. Chem.264, 2272–2278 (1989). CASPubMed Google Scholar
Laiho, M., Weis, M. B. & Massague, J. Concomitant loss of transforming growth factor (TGF)-β receptor types I and II in TGF-β-resistant cell mutants implicates both receptor types in signal transduction. J. Biol. Chem.265, 18518–18524 (1990). CASPubMed Google Scholar
Goyette, M. C. et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol.12, 1387–1395 (1992). ArticleCASPubMedPubMed Central Google Scholar
Bai, R. Y., Dieter, P., Peschel, C., Morris, S. W. & Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-γ to mediate its mitogenicity. Mol. Cell. Biol.18, 6951–6961 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hoodless, P. A. et al. MADR1, a MAD-related protein that functions in BMP2 signalling pathways. Cell85, 489–500 (1996). ArticleCASPubMed Google Scholar
Hammerschmidt, M. et al. Dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development123, 95–102 (1996). CASPubMed Google Scholar
Molitor, J. A., Walker, W. H., Doerre, S., Ballard, D. W. & Greene, W. C. NF-kappa B: a family of inducible and differentially expressed enhancer- binding proteins in human T cells. Proc. Natl Acad. Sci. USA87, 10028–10032 (1990). ArticleCASPubMedPubMed Central Google Scholar