Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase (original) (raw)

References

  1. Kelly, T. J. & Brown, G. W. Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880 (2000).
    Article CAS PubMed Google Scholar
  2. Blow, J. J. New EMBO Member's Review: Control of chromosomal DNA replication in the early Xenopus embryo. EMBO J. 20, 3293–3297 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  3. Labib, K. & Diffley, J. F. X. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr. Opin. Genet. Dev. 11, 64–70 (2001).
    Article CAS PubMed Google Scholar
  4. Tye, B. K. & Sawyer, S. The hexameric eukaryotic MCM helicase: building symmetry from nonidentical parts. J. Biol. Chem. 275, 34833–34836 (2000).
    Article CAS PubMed Google Scholar
  5. Hofmann, J. F. & Beach, D. Cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 13, 425–434 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  6. Nishitani, H., Lygerou, Z., Nishimoto, T. & Nurse, P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404, 625–628 (2000).
    Article CAS PubMed Google Scholar
  7. Whittaker, A. J., Royzman, I. & Orr-Weaver, T. L. Drosophila double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev. 14, 1765–1776 (2000).
    CAS PubMed PubMed Central Google Scholar
  8. Maiorano, D., Moreau, J. & Mechali, M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404, 622–625 (2000).
    Article CAS PubMed Google Scholar
  9. Kelly, T. J. et al. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74, 371–382 (1993).
    Article CAS PubMed Google Scholar
  10. Tada, S., Li, A., Maiorano, D., Mechali, M. & Blow, J. J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).
    Article CAS PubMed Google Scholar
  11. Wohlschlegel, J. A. et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309–2312 (2000).
    Article CAS PubMed Google Scholar
  12. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).
    Article CAS PubMed Google Scholar
  13. Reid, R. J., Fiorani, P., Sugawara, M. & Bjornsti, M. A. CDC45 and DPB11 are required for processive DNA replication and resistance to DNA topoisomerase I-mediated DNA damage. Proc. Natl Acad. Sci. USA 96, 11440–11445 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Huang, M. E., Cadieu, E., Souciet, J. L. & Galibert, F. Disruption of six novel yeast genes reveals three genes essential for vegetative growth and one required for growth at low temperature. Yeast 13, 1181–1194 (1997).
    Article CAS PubMed Google Scholar
  15. Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).
    Article CAS PubMed Google Scholar
  16. Labib, K., Tercero, J. A. & Diffley, J. F. X. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).
    Article CAS PubMed Google Scholar
  17. Donovan, S., Harwood, J., Drury, L. S. & Diffley, J. F. X. Cdc6-Dependent Loading of Mcm Proteins onto Pre-replicative Chromatin in Budding Yeast. Proc. Natl Acad. Sci. USA 94, 5611–5616 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  18. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  19. Hennessy, K. M., Clark, C. D. & Botstein, D. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4, 2252–2263 (1990).
    Article CAS PubMed Google Scholar
  20. Yan, H., Merchant, A. M. & Tye, B.-K. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149–2160 (1993).
    Article CAS PubMed Google Scholar
  21. Dalton, S. & Whitbread, L. Cell-cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA-replication in budding yeast. Proc. Natl Acad. Sci. USA 92, 2514–2518 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  22. Labib, K., Diffley, J. F. X. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biol. 1, 415–422 (1999).
    Article CAS PubMed Google Scholar
  23. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7p. Curr. Biol. 10, 195–205 (2000).
    Article CAS PubMed Google Scholar
  24. Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).
    Article CAS PubMed Google Scholar
  25. Drury, L. S., Perkins, G. & Diffley, J. F. X. The Cyclin Dependent Kinase Cdc28p Regulates Distinct Modes of Cdc6p Proteolysis during the Budding Yeast Cell Cycle. Curr. Biol. 10, 231–240 (2000).
    Article CAS PubMed Google Scholar
  26. Nguyen, V. Q., Co, C. & Li, J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068–1073 (2001).
    Article CAS PubMed Google Scholar
  27. Zhou, C. & Jong, A. CDC6 mRNA fluctuates periodically in the yeast cell cycle. J. Biol. Chem. 265, 19904–19909 (1990).
    CAS PubMed Google Scholar
  28. Piatti, S., Lengauer, C. & Nasmyth, K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14, 3788–3799 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  29. Zwerschke, W., Rottjakob, H.-W. & Küntzel, H. The Saccharomyces cerevisiae CDC6 gene is transcribed at late mitosis and encodes a ATP/GTPase controlling S phase initiation. J. Biol. Chem. 269, 23351–23356 (1994).
    CAS PubMed Google Scholar
  30. McInerny, C. J., Partridge, J. F., Mikesell, G. E., Creemer, D. P. & Breeden, L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).
    Article CAS PubMed Google Scholar
  31. Labib, K., Kearsey, S. E. & Diffley, J. F. X. MCM2-7 proteins are essential components of prereplicative complexes, that accumulate co-operatively in the nucleus during G1-phase, and are required to establish, but not maintain, the S-phase checkpoint. Mol. Biol. Cell 12, 3658–3667 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  32. Pasion, S. G. & Forsburg, S. L. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10, 4043–4057 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  33. Kimura, H., Ohtomo, T., Yamaguchi, M., Ishii, A. & Sugimoto, K. Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells 1, 977–993 (1996).
    Article CAS PubMed Google Scholar
  34. Kearsey, S. E. & Labib, K. MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398, 113–136 (1998).
    Article CAS PubMed Google Scholar
  35. Noton, E. A. & Diffley, J. F. X. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000).
    Article CAS PubMed Google Scholar
  36. Diffley, J. F. X. DNA Replication: Building the perfect switch. Curr. Biol. 11, R367–R370 (2001).
    Article CAS PubMed Google Scholar
  37. Godinho Ferreira, M., Santocanale, C., Drury, L. S. & Diffley, J. F. X. Dbf4p, an essential S phase promoting factor, is targeted for degradation by the Anaphase Promoting Complex. Mol. Cell. Biol. 20, 242–248 (2000).
    Article PubMed Central Google Scholar
  38. Tercero, J. A., Labib, K. & Diffley, J. F. X. DNA synthesis at individual replication forks requires the essential initiation factor, Cdc45p. EMBO J. 19, 2082–2093 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  39. Belli, G., Gari, E., Aldea, M. & Herrero, E. Functional analysis of yeast essential genes using a promoter- substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127–1138 (1998).
    Article CAS PubMed Google Scholar
  40. Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26, 942–947 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  41. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS PubMed Google Scholar
  42. Drury, L. S., Perkins, G. & Diffley, J. F. X. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16, 5966–5976 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  43. Bousset, K. & Diffley, J. F. X. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12, 480–490 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  44. Schepers, A. & Diffley, J. F. X. Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein. J. Mol. Biol. 308, 597–608 (2001).
    Article CAS PubMed Google Scholar
  45. Evan, G., Lewis, G., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for the human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  46. Rowley, A., Cocker, J. H., Harwood, J. & Diffley, J. F. X. Initiation Complex Assembly at Budding Yeast Replication Origins Begins with the Recognition of a Bipartite Sequence by Limiting Amounts of the Initiator, ORC. EMBO J. 14, 2631–2641 (1995).
    Article CAS PubMed PubMed Central Google Scholar

Download references