TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling (original) (raw)
Young, J. & Povey, S. The genetic basis of tuberous sclerosis. Mol. Med. Today4, 313–319 (1998). ArticleCASPubMed Google Scholar
Gomez, M. R. Phenotypes of the tuberous sclerosis complex with a revision of diagnostic criteria. Ann. NY Acad. Sci.615, 1–7 (1991). ArticleCASPubMed Google Scholar
The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315 (1993).
Wienecke, R., Konig, A. & DeClue, J. E. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J. Biol. Chem.270, 16409–16414 (1995). ArticleCASPubMed Google Scholar
Xiao, G. H., Shoarinejad, F., Jin, F., Golemis, E. A. & Yeung, R. S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem.272, 6097–6100 (1997). ArticleCASPubMed Google Scholar
Onda, H., Lueck, A., Marks, P. W., Warren, H. B. & Kwiatkowski, D. J. Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest.104, 687–695 (1999). ArticleCASPubMedPubMed Central Google Scholar
Au, K. S. et al. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients. Am. J. Hum. Genet.62, 286–294 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, T. et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc. Natl Acad. Sci. USA98, 8762–8767 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ito, N. & Rubin, G. M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell96, 529–539 (1999). ArticleCASPubMed Google Scholar
Potter, C. J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell105, 357–368 (2001). ArticleCASPubMed Google Scholar
Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell105, 345–355 (2001). ArticleCASPubMed Google Scholar
Kozma, S. C. & Thomas, G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays24, 65–71 (2002). ArticleCASPubMed Google Scholar
Stocker, H. & Hafen, E. Genetic control of cell size. Curr. Opin. Genet. Dev.10, 529–535 (2000). ArticleCASPubMed Google Scholar
Weinkove, D. & Leevers, S. J. The genetic control of organ growth: insights from Drosophila. Curr. Opin. Genet. Dev.10, 75–80 (2000). ArticleCASPubMed Google Scholar
DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature345, 78–80 (1990). ArticleCASPubMed Google Scholar
Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell75, 59–72 (1993). CASPubMed Google Scholar
Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature372, 182–186 (1994). ArticleCASPubMed Google Scholar
Shima, H. et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J.17, 6649–6659 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vogt, P. K. PI 3-kinase, mTOR, protein synthesis and cancer. Trends Mol. Med.7, 482–484 (2001). ArticleCASPubMed Google Scholar
Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA98, 10314–10319 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell103, 253–262 (2000). ArticleCASPubMed Google Scholar
Shah, O. J., Anthony, J. C., Kimball, S. R. & Jefferson, L. S. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am. J. Physiol. Endocrinol. Metab.279, E715–E729 (2000). ArticleCASPubMed Google Scholar
Sonenberg, N. & Gingras, A. C. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol.10, 268–275 (1998). ArticleCASPubMed Google Scholar
Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA98, 10320–10325 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res.253, 100–109 (1999). ArticleCASPubMed Google Scholar
Pearson, R. B. et al. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J.14, 5279–5287 (1995). ArticleCASPubMedPubMed Central Google Scholar
Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet.68, 64–80 (2001). ArticleCASPubMed Google Scholar
Jones, A. C. et al. Comprehensive mutation analysis of TSC1 and TSC2 and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet.64, 1305–1315 (1999). ArticleCASPubMedPubMed Central Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927 (1999). ArticleCASPubMed Google Scholar
Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biol.3, 596–601 (2001). ArticleCASPubMed Google Scholar
Benvenuto, G. et al. The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene19, 6306–6316 (2000). ArticleCASPubMed Google Scholar
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.273, 14484–14494 (1998). ArticleCASPubMed Google Scholar
Weng, Q. P., Andrabi, K., Kozlowski, M. T., Grove, J. R. & Avruch, J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol. Cell. Biol.15, 2333–2340 (1995). ArticleCASPubMedPubMed Central Google Scholar
Schalm, S. S. & Blenis, J. Identification of a Conserved Motif Required for mTOR Signaling. Curr. Biol.12, 632–639 (2002). ArticleCASPubMed Google Scholar
Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. & Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J.344, 427–431 (1999). ArticleCASPubMedPubMed Central Google Scholar
Scott, P. H., Brunn, G. J., Kohn, A. D., Roth, R. A. & Lawrence, J. C. Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA95, 7772–7777 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res.60, 3504–3513 (2000). CASPubMed Google Scholar
Aoki, M., Blazek, E. & Vogt, P. K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl Acad. Sci. USA98, 136–141 (2001). ArticleCASPubMed Google Scholar
Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature376, 599–602 (1995). ArticleCASPubMed Google Scholar
Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet.11, 525–534 (2002). ArticleCASPubMed Google Scholar
Radimerski, T. et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nature Cell Biol.4, 251–255 (2002). ArticleCASPubMed Google Scholar
Tuttle, R. L. et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nature Med.7, 1133–1137 (2001). ArticleCASPubMed Google Scholar
Reynolds, I. T., Bodine, S. C. & Lawrence, J. C. Jr. Control of Ser 2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J. Biol. Chem.277, 17657–17662 (2002). ArticleCASPubMed Google Scholar
Peterson, R. T., Desai, B. N., Hardwick, J. S. & Schreiber, S. L. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin-associated protein. Proc. Natl Acad. Sci. USA96, 4438–4442 (1999). ArticleCASPubMedPubMed Central Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleCASPubMed Google Scholar