Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells (original) (raw)
Rodriguez-Boulan, E. & Nelson, W.J. Morphogenesis of the polarized epithelial cell phenotype. Science245, 718–725 (1989). ArticleCAS Google Scholar
Simons, K. & Wandinger-Ness, A. Polarized sorting in epithelia. Cell62, 207–210 (1990). ArticleCAS Google Scholar
Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol.3, 140–149 (2001). ArticleCAS Google Scholar
Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol.9, 291–294 (1999). ArticleCAS Google Scholar
Chuang, J.Z. & Sung, C.H. The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells. J. Cell Biol.142, 1245–1256 (1998). ArticleCAS Google Scholar
Le Gall, A., Yeaman, C., Muesch, A. & Rodriguez-Boulan, E. Epithelial cell polarity: new perspectives. Sem. Nephrol.15, 272–284 (1995). CAS Google Scholar
Ikonen, E. & Simons, K. Protein and lipid sorting from the _trans_-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol9, 503–509 (1998). ArticleCAS Google Scholar
Toomre, D., Keller, P., White, J., Olivo, J.C. & Simons, K. Dual-color visualization of _trans_-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci.112, 21–33 (1999). CAS Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi _trans_port of a plasma-membrane protein. Nature Cell Biol.2, 125–127 (2000). ArticleCAS Google Scholar
Bonifacino, J.S. & Dell'Angelica, E.C. Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell Biol.145, 923–926 (1999). ArticleCAS Google Scholar
Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem.273, 25915–25921 (1998). ArticleCAS Google Scholar
Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol.15, 705–732 (1999). ArticleCAS Google Scholar
Kirchhausen, T., Bonifacino, J.S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol.9, 488–495 (1997). ArticleCAS Google Scholar
Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical _trans_port of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol.155, 77–88 (2001). ArticleCAS Google Scholar
Nakagawa, T. et al. A novel motor, KIF13A, _trans_ports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell103, 569–581 (2000). ArticleCAS Google Scholar
Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle _trans_port. Science288, 1796–1802 (2000). ArticleCAS Google Scholar
Bacallao, R. et al. The subcellular organization of Madin-Darby Canine Kidney cells during the formation of a polarized epithelium. J. Cell Biol.109, 2817–2832 (1989). ArticleCAS Google Scholar
Gilbert, T., Le Bivic, A., Quaroni, A. & Rodriguez-Boulan, E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J.Cell Biol.113, 275–288 (1991). ArticleCAS Google Scholar
Grindstaff, K.K., Bacallao, R.L. & Nelson, W.J. Apiconuclear organization of microtubules does not specify protein delivery from the _trans_-Golgi network to different membrane domains in polarized epithelial cells. Mol. Biol. Cell9, 685–699 (1998). ArticleCAS Google Scholar
Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol.149, 23–32 (2000). ArticleCAS Google Scholar
Achler, C., Filmer, D., Merte, C. & Drenckhahn, D. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J. Cell Biol.109, 179–189 (1989). ArticleCAS Google Scholar
Breitfeld, P.P., Mckinnon, W.C. & Mostov, K.E. Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized Madin-Darby canine kidney cells. J. Cell. Biol.111, 2365–2373 (1990). ArticleCAS Google Scholar
Rindler, M.J., Ivanov, I.E. & Sabatini, D.D. Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J. Cell Biol.104, 231–241 (1987). ArticleCAS Google Scholar
Matter, K., Bucher, K. & Hauri, H.P. Microtubule perturbation retards both the direct and the indirect apical pathway but does not affect sorting of plasma membrane proteins in intestinal epithelial cells (Caco-2). EMBO J.9, 3163–3170 (1990). ArticleCAS Google Scholar
Lafont, F., Burkhardt, J. & Simons, K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature372, 801–803 (1994). ArticleCAS Google Scholar
Hugon, J.S., Bennett, G., Pothier, P. & Ngoma, Z. Loss of microtubules and alteration of glycoprotein migration in organ cultures of mouse intestine exposed to nocodazole or colchicine. Cell Tissue Res.248, 653–662 (1987). ArticleCAS Google Scholar
Saunders, C. & Limbird, L.E. Disruption of microtubules reveals two independent apical targeting mechanisms for G-protein-coupled receptors in polarized renal epithelial cells. J. Biol. Chem.272, 19035–19045 (1997). ArticleCAS Google Scholar
Eilers, U., Klumperman, J. & Hauri, H.P. Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). J. Cell Biol.108, 13–22 (1989). ArticleCAS Google Scholar
De Almeida, J.B. & Stow, J.L. Disruption of microtubules alters polarity of basement membrane proteoglycan secretion in epithelial cells. Am. J. Physiol.261, C691–C700 (1991). ArticleCAS Google Scholar
Boll, W., Partin, J.S., Katz, A.I., Caplan, M.J. & Jamieson, J.D. Distinct secretory pathways for basolateral targeting of membrane and secretory proteins in polarized epithelial cells. Proc. Natl Acad. Sci. USA88, 8592–8596 (1991). ArticleCAS Google Scholar
Grindstaff, K. et al. Sec6/8 Complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell Press93, 731–740 (1998). CAS Google Scholar
Lipschutz, J.H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell11, 4259–4275 (2000). ArticleCAS Google Scholar
Low, S.H. et al. Differential localization of Syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell7, 2007–2018 (1996). ArticleCAS Google Scholar
Low, S.H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK Cells. J. Cell Biol.141, 1503–1513 (1998). ArticleCAS Google Scholar
Lafont, F. et al. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl Acad. Sci. USA96, 3734–3738 (1999). ArticleCAS Google Scholar
Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: The cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell71, 741–753 (1992). ArticleCAS Google Scholar
Le Bivic, A. et al. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells. J. Cell Biol.115, 607–618 (1991). ArticleCAS Google Scholar
Le Gall, A.H., Powell, S.K., Yeaman, C.A. & Rodriguez-Boulan, E. The neural cell adhesion molecule expresses a tyrosine-independent basolateral sorting signal. J. Biol. Chem.272, 4559–4567 (1997). ArticleCAS Google Scholar
Cole, N.B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell7, 631–50 (1996). ArticleCAS Google Scholar
Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol.143, 1505–1521 (1998). ArticleCAS Google Scholar
Wacker, I. et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J. Cell Sci.110, 1453–1463 (1997). CASPubMed Google Scholar
Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol.143, 1485–1503 (1998). ArticleCAS Google Scholar
Rindler, M.J., Ivanov, I.E., Plesken, H., Rodriguez-Boulan, E. & Sabatini, D.D. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J. Cell Biol.98, 1304–1319 (1984). ArticleCAS Google Scholar
Le Bivic, A., Sambuy, Y., Mostov, K. & Rodriguez-Boulan, E. Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J. Cell Biol.110, 1533–1539 (1990). ArticleCAS Google Scholar
Pfeiffer, S., Fuller, S.D. & Simons, K. Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells. J. Cell Biol.101, 470–476 (1985). ArticleCAS Google Scholar
Pfeffer, S.R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol.1, E17–E22 (1999). ArticleCAS Google Scholar
Waters, M.G. & Pfeffer, S.R. Membrane tethering in intracellular transport. Curr. Opin. Cell Biol.11, 453–459 (1999). ArticleCAS Google Scholar
Lowe, M. Membrane transport: tethers and TRAPPs. Curr. Biol.10, R407–R409 (2000). ArticleCAS Google Scholar
Hazuka, C.D. et al. The Sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci.19, 1324–1334 (1999). ArticleCAS Google Scholar
Low, S.H. et al. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol. Biol. Cell11, 3045–3060 (2000). ArticleCAS Google Scholar