Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents (original) (raw)
References
Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev.106, 3468–3496 (2006). ArticleCAS Google Scholar
Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev.97, 2651–2674 (1997). ArticleCAS Google Scholar
Roberts, A. A., Ryan, K. S., Moore, B. S. & Gulder, T. A. M. Total (bio)synthesis: strategies of nature and of chemists. Top. Curr. Chem.297, 149–203 (2010). ArticleCAS Google Scholar
van Wageningen, A. M. A. et al. Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem. Biol.5, 155–162 (1998). ArticleCAS Google Scholar
Weber, G., Schorgendorfer, K., Schneiderscherzer, E. & Leitner, E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr. Genet.26, 120–125 (1994). ArticleCAS Google Scholar
Duitman, E. H. et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl Acad. Sci. USA96, 13294–13299 (1999). ArticleCAS Google Scholar
Cane, D. E., Walsh, C. T. & Khosla, C. Biochemistry—harnessing the biosynthetic code: combinations, permutations, and mutations. Science282, 63–68 (1998). ArticleCAS Google Scholar
Wilkinson, B. & Micklefield, J. Mining and engineering natural-product biosynthetic pathways. Nature Chem. Biol.3, 379–386 (2007). ArticleCAS Google Scholar
Weist, S. & Sussmuth, R. D. Mutational biosynthesis—a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl. Microbiol. Biotechnol.68, 141–150 (2005). ArticleCAS Google Scholar
von Dohren, H., Keller, U., Vater, J. & Zocher, R. Multifunctional peptide synthetases. Chem. Rev.97, 2675–2706 (1997). Article Google Scholar
Sattely, E. S., Fischbach, M. A. & Walsh, C. T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep.25, 757–793 (2008). ArticleCAS Google Scholar
Aquino, C. et al. A biomimetic polyketide-inspired approach to small-molecule ligand discovery. Nature Chem.4, 99–104 (2012). ArticleCAS Google Scholar
Woerly, E. M., Roy, J. & Burke M. D . Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nature Chem.6, 484–491 (2014). ArticleCAS Google Scholar
Carrillo, N., Davalos, E. A., Russak, J. A. & Bode, J. W. Iterative, aqueous synthesis of β3-oligopeptides without coupling reagents. J. Am. Chem. Soc.128, 1452–1453 (2006). ArticleCAS Google Scholar
Yu, S. Y., Ishida, H., Juarez-Garcia, M. E. & Bode, J. W. Unified synthesis of enantiopure β2h, β3h and β2,3-amino acids. Chem. Sci.1, 637–641 (2010). ArticleCAS Google Scholar
Gerfaud, T., Chiang, Y. L., Kreituss, I., Russak, J. A. & Bode, J. W. Enantioselective, chromatography-free synthesis of β3-amino acids with natural and unnatural side chains. Org. Process Res. Dev.16, 687–696 (2012). ArticleCAS Google Scholar
Njoroge, F. G., Chen, K. X., Shih, N. Y. & Piwinski, J. J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res.41, 50–59 (2008). ArticleCAS Google Scholar
Kwong, A. D., Kauffman, R. S., Hurter, P. & Mueller, P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nature Biotechnol.29, 993–1003 (2011). ArticleCAS Google Scholar
Venkatraman, S. et al. Discovery of (1_R_,5_S_)-_N_-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J. Med. Chem.49, 6074–6086 (2006). ArticleCAS Google Scholar
Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep.26, 1362–1384 (2009). ArticleCAS Google Scholar
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol.5, R245–R249 (1998). ArticleCAS Google Scholar
Wenzel, S. C. et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem. Biol.12, 349–356 (2005). ArticleCAS Google Scholar
Demain, A. L. & Adrio, J. L. Contributions of microorganisms to industrial biology. Mol. Biotechnol.38, 41–55 (2008). ArticleCAS Google Scholar
Schwarzer, D., Finking, R. & Marahiel, M. A. Nonribosomal peptides: from genes to products. Nat. Prod. Rep.20, 275–287 (2003). ArticleCAS Google Scholar
Keasling, J. D. Manufacturing molecules through metabolic engineering. Science330, 1355–1358 (2010). ArticleCAS Google Scholar
Walsh, C. T. Combinatorial biosynthesis of antibiotics: challenges and opportunities. ChemBioChem3, 125–134 (2002). Article Google Scholar
Sieber, S. A. & Marahiel, M. A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev.105, 715–738 (2005). ArticleCAS Google Scholar
Linne, U. & Marahiel, M. A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry39, 10439–10447 (2000). ArticleCAS Google Scholar
Yeh, E., Kohli, R. M., Bruner, S. D. & Walsh, C. T. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. ChemBioChem5, 1290–1293 (2004). ArticleCAS Google Scholar
Uguru, G. C. et al. Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J. Am. Chem. Soc.126, 5032–5033 (2004). ArticleCAS Google Scholar
Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev.97, 391–410 (1997). ArticleCAS Google Scholar
Roberts, R. W. & Szostak, J. W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA94, 12297–12302 (1997). ArticleCAS Google Scholar
Josephson, K., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc.127, 11727–11735 (2005). ArticleCAS Google Scholar
Terasaka, N. & Suga, H. Flexizymes-facilitated genetic code reprogramming leading to the discovery of drug-like peptides. Chem. Lett.43, 11–19 (2014). ArticleCAS Google Scholar
Mannocci, L., Leimbacher, M., Wichert, M., Scheuermann, J. & Neri, D. 20 years of DNA-encoded chemical libraries. Chem. Commun.47, 12747–12753 (2011). ArticleCAS Google Scholar
Lam, K. S., Lebl, M. & Krchnak, V. The ‘one-bead-one-compound’ combinatorial library method. Chem. Rev.97, 411–448 (1997). ArticleCAS Google Scholar
Ripka, W. C., Barker, G. & Krakover, J. High-throughput purification of compound libraries. Drug Discov. Today6, 471–477 (2001). ArticleCAS Google Scholar
Cooper, A. J., Ginos, J. Z. & Meister, A. Synthesis and properties of the α-keto acids. Chem. Rev.83, 321–358 (1983). ArticleCAS Google Scholar
Dumas, A. M. & Bode, J. W. Synthesis of acyltrifluoroborates. Org. Lett.14, 2138–2141 (2012). ArticleCAS Google Scholar
Erős, G., Kushida, Y. & Bode, J. W. A reagent for the one-step preparation of potassium acyltrifluoroborates (KATs) from aryl and heteroaryl halides. Angew. Chem. Int. Ed.126, 7734–7737 (2014). Article Google Scholar
Ju, L., Bode, J. W., Toma, T. & Fukuyama, T. Amide formation by decarboxylative condensation of hydroxylamines and α-ketoacids: N_-[(1_S)-1 phenylethyl]-benzeneacetamide. Org. Synth.87, 218–225 (2010). ArticleCAS Google Scholar
Narumi, T. & Bode, J. W. α,α-Dichloroisoxazolidinones for the synthesis and chemoselective peptide ligation of α-peptide α-ketoacids. Heterocycles82, 1515–1525 (2011). CAS Google Scholar
Juarez-Garcia, M. E., Yu, S. Y. & Bode, J. W. Asymmetric synthesis of enantiopure isoxazolidinone monomers for the synthesis of β3-oligopeptides by chemoselective amide ligation. Tetrahedron66, 4841–4853 (2010). ArticleCAS Google Scholar
Frederickson, M., Grigg, R., Thornton-Pett, M. & Redpath, J. Palladium(II) catalysed oxime–metallo–nitrone–isoxazolidine cascade reactions of α-imino aldoximes. Tetrahedron Lett.38, 7777–7780 (1997). ArticleCAS Google Scholar
Ogunkoya, A. O., Pattabiraman, V. R. & Bode, J. W. Sequential α-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. Angew. Chem. Int. Ed.51, 9693–9697 (2012). ArticleCAS Google Scholar
Venanzi, M. & Kimura, S. Special issue: peptide materials. Polym. J.45, 467 (2013). ArticleCAS Google Scholar
Wennemers, H. Asymmetric catalysis with peptides. Chem. Commun.47, 12036–12041 (2011). ArticleCAS Google Scholar
Taliani M. et al. A continuous assay of hepatitis C virus protease based on resonance energy transfer depsipeptide substrates. Anal. Biochem.240, 60–67 (1996). ArticleCAS Google Scholar
Evans, B. S., Chen, Y. Q., Metcalf, W. W., Zhao, H. M. & Kelleher, N. L. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol.18, 601–607 (2011). ArticleCAS Google Scholar
Jin, M., Fischbach, M. A. & Clardy, J. A biosynthetic gene cluster for the acetyl–CoA carboxylase inhibitor andrimid. J. Am. Chem. Soc.128, 10660–10661 (2006). ArticleCAS Google Scholar