Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents (original) (raw)

References

  1. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).
    Article CAS Google Scholar
  2. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997).
    Article CAS Google Scholar
  3. Roberts, A. A., Ryan, K. S., Moore, B. S. & Gulder, T. A. M. Total (bio)synthesis: strategies of nature and of chemists. Top. Curr. Chem. 297, 149–203 (2010).
    Article CAS Google Scholar
  4. van Wageningen, A. M. A. et al. Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem. Biol. 5, 155–162 (1998).
    Article CAS Google Scholar
  5. Weber, G., Schorgendorfer, K., Schneiderscherzer, E. & Leitner, E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr. Genet. 26, 120–125 (1994).
    Article CAS Google Scholar
  6. Duitman, E. H. et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl Acad. Sci. USA 96, 13294–13299 (1999).
    Article CAS Google Scholar
  7. Cane, D. E., Walsh, C. T. & Khosla, C. Biochemistry—harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63–68 (1998).
    Article CAS Google Scholar
  8. Wilkinson, B. & Micklefield, J. Mining and engineering natural-product biosynthetic pathways. Nature Chem. Biol. 3, 379–386 (2007).
    Article CAS Google Scholar
  9. Weist, S. & Sussmuth, R. D. Mutational biosynthesis—a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl. Microbiol. Biotechnol. 68, 141–150 (2005).
    Article CAS Google Scholar
  10. von Dohren, H., Keller, U., Vater, J. & Zocher, R. Multifunctional peptide synthetases. Chem. Rev. 97, 2675–2706 (1997).
    Article Google Scholar
  11. Sattely, E. S., Fischbach, M. A. & Walsh, C. T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25, 757–793 (2008).
    Article CAS Google Scholar
  12. Aquino, C. et al. A biomimetic polyketide-inspired approach to small-molecule ligand discovery. Nature Chem. 4, 99–104 (2012).
    Article CAS Google Scholar
  13. Woerly, E. M., Roy, J. & Burke M. D . Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nature Chem. 6, 484–491 (2014).
    Article CAS Google Scholar
  14. Carrillo, N., Davalos, E. A., Russak, J. A. & Bode, J. W. Iterative, aqueous synthesis of β3-oligopeptides without coupling reagents. J. Am. Chem. Soc. 128, 1452–1453 (2006).
    Article CAS Google Scholar
  15. Yu, S. Y., Ishida, H., Juarez-Garcia, M. E. & Bode, J. W. Unified synthesis of enantiopure β2h, β3h and β2,3-amino acids. Chem. Sci. 1, 637–641 (2010).
    Article CAS Google Scholar
  16. Gerfaud, T., Chiang, Y. L., Kreituss, I., Russak, J. A. & Bode, J. W. Enantioselective, chromatography-free synthesis of β3-amino acids with natural and unnatural side chains. Org. Process Res. Dev. 16, 687–696 (2012).
    Article CAS Google Scholar
  17. Njoroge, F. G., Chen, K. X., Shih, N. Y. & Piwinski, J. J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res. 41, 50–59 (2008).
    Article CAS Google Scholar
  18. Kwong, A. D., Kauffman, R. S., Hurter, P. & Mueller, P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nature Biotechnol. 29, 993–1003 (2011).
    Article CAS Google Scholar
  19. Venkatraman, S. et al. Discovery of (1_R_,5_S_)-_N_-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J. Med. Chem. 49, 6074–6086 (2006).
    Article CAS Google Scholar
  20. Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).
    Article CAS Google Scholar
  21. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).
    Article CAS Google Scholar
  22. Wenzel, S. C. et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem. Biol. 12, 349–356 (2005).
    Article CAS Google Scholar
  23. Demain, A. L. & Adrio, J. L. Contributions of microorganisms to industrial biology. Mol. Biotechnol. 38, 41–55 (2008).
    Article CAS Google Scholar
  24. Schwarzer, D., Finking, R. & Marahiel, M. A. Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003).
    Article CAS Google Scholar
  25. Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).
    Article CAS Google Scholar
  26. Walsh, C. T. Combinatorial biosynthesis of antibiotics: challenges and opportunities. ChemBioChem 3, 125–134 (2002).
    Article Google Scholar
  27. Sieber, S. A. & Marahiel, M. A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005).
    Article CAS Google Scholar
  28. Linne, U. & Marahiel, M. A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439–10447 (2000).
    Article CAS Google Scholar
  29. Yeh, E., Kohli, R. M., Bruner, S. D. & Walsh, C. T. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. ChemBioChem 5, 1290–1293 (2004).
    Article CAS Google Scholar
  30. Uguru, G. C. et al. Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J. Am. Chem. Soc. 126, 5032–5033 (2004).
    Article CAS Google Scholar
  31. Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).
    Article CAS Google Scholar
  32. Roberts, R. W. & Szostak, J. W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).
    Article CAS Google Scholar
  33. Josephson, K., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).
    Article CAS Google Scholar
  34. Terasaka, N. & Suga, H. Flexizymes-facilitated genetic code reprogramming leading to the discovery of drug-like peptides. Chem. Lett. 43, 11–19 (2014).
    Article CAS Google Scholar
  35. Mannocci, L., Leimbacher, M., Wichert, M., Scheuermann, J. & Neri, D. 20 years of DNA-encoded chemical libraries. Chem. Commun. 47, 12747–12753 (2011).
    Article CAS Google Scholar
  36. Lam, K. S., Lebl, M. & Krchnak, V. The ‘one-bead-one-compound’ combinatorial library method. Chem. Rev. 97, 411–448 (1997).
    Article CAS Google Scholar
  37. Ripka, W. C., Barker, G. & Krakover, J. High-throughput purification of compound libraries. Drug Discov. Today 6, 471–477 (2001).
    Article CAS Google Scholar
  38. Cooper, A. J., Ginos, J. Z. & Meister, A. Synthesis and properties of the α-keto acids. Chem. Rev. 83, 321–358 (1983).
    Article CAS Google Scholar
  39. Dumas, A. M. & Bode, J. W. Synthesis of acyltrifluoroborates. Org. Lett. 14, 2138–2141 (2012).
    Article CAS Google Scholar
  40. Erős, G., Kushida, Y. & Bode, J. W. A reagent for the one-step preparation of potassium acyltrifluoroborates (KATs) from aryl and heteroaryl halides. Angew. Chem. Int. Ed. 126, 7734–7737 (2014).
    Article Google Scholar
  41. Ju, L., Bode, J. W., Toma, T. & Fukuyama, T. Amide formation by decarboxylative condensation of hydroxylamines and α-ketoacids: N_-[(1_S)-1 phenylethyl]-benzeneacetamide. Org. Synth. 87, 218–225 (2010).
    Article CAS Google Scholar
  42. Narumi, T. & Bode, J. W. α,α-Dichloroisoxazolidinones for the synthesis and chemoselective peptide ligation of α-peptide α-ketoacids. Heterocycles 82, 1515–1525 (2011).
    CAS Google Scholar
  43. Juarez-Garcia, M. E., Yu, S. Y. & Bode, J. W. Asymmetric synthesis of enantiopure isoxazolidinone monomers for the synthesis of β3-oligopeptides by chemoselective amide ligation. Tetrahedron 66, 4841–4853 (2010).
    Article CAS Google Scholar
  44. Frederickson, M., Grigg, R., Thornton-Pett, M. & Redpath, J. Palladium(II) catalysed oxime–metallo–nitrone–isoxazolidine cascade reactions of α-imino aldoximes. Tetrahedron Lett. 38, 7777–7780 (1997).
    Article CAS Google Scholar
  45. Ogunkoya, A. O., Pattabiraman, V. R. & Bode, J. W. Sequential α-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. Angew. Chem. Int. Ed. 51, 9693–9697 (2012).
    Article CAS Google Scholar
  46. Venanzi, M. & Kimura, S. Special issue: peptide materials. Polym. J. 45, 467 (2013).
    Article CAS Google Scholar
  47. Wennemers, H. Asymmetric catalysis with peptides. Chem. Commun. 47, 12036–12041 (2011).
    Article CAS Google Scholar
  48. Taliani M. et al. A continuous assay of hepatitis C virus protease based on resonance energy transfer depsipeptide substrates. Anal. Biochem. 240, 60–67 (1996).
    Article CAS Google Scholar
  49. Evans, B. S., Chen, Y. Q., Metcalf, W. W., Zhao, H. M. & Kelleher, N. L. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol. 18, 601–607 (2011).
    Article CAS Google Scholar
  50. Jin, M., Fischbach, M. A. & Clardy, J. A biosynthetic gene cluster for the acetyl–CoA carboxylase inhibitor andrimid. J. Am. Chem. Soc. 128, 10660–10661 (2006).
    Article CAS Google Scholar

Download references