A monodisperse transmembrane α-helical peptide barrel (original) (raw)
Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem.70, 79–112 (2005). CASPubMed Google Scholar
Woolfson, D. N. et al. De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol.33, 16–26 (2015). CASPubMed Google Scholar
Woolfson, D. N., Bartlett, G. J., Bruning, M. & Thomson, A. R. New currency for old rope: from coiled-coil assemblies to alpha-helical barrels. Curr. Opin. Struct. Biol.22, 432–441 (2012). CASPubMed Google Scholar
Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science240, 1177–1181 (1988). CASPubMed Google Scholar
Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science346, 1520–1524 (2014). CASPubMedPubMed Central Google Scholar
Franceschini, L., Soskine, M., Biesemans, A. & Maglia, G. A nanopore machine promotes the vectorial transport of DNA across membranes. Nat. Commun. 4, 2415 (2013). PubMedPubMed Central Google Scholar
Bayley, H. Membrane-protein structure: piercing insights. Nature459, 651–652 (2009). CASPubMed Google Scholar
Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature444, 226–229 (2006). ArticleCAS Google Scholar
Kong, L. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat. Chem.5, 651–659 (2013). CASPubMed Google Scholar
Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett.12, 4895–4900 (2012). CASPubMedPubMed Central Google Scholar
Soskine, M., Biesemans, A., De Maeyer, M. & Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135, 13456–13463 (2013). CASPubMedPubMed Central Google Scholar
Tanaka, K., Caaveiro, J. M., Morante, K., González-Mañas, J. M. & Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). PubMedPubMed Central Google Scholar
Thomson, A. R. et al. Computational design of water-soluble alpha-helical barrels. Science346, 485–488 (2014). CASPubMed Google Scholar
Bayley, H. Designed membrane channels and pores. Curr. Opin. Biotechnol.10, 94–103 (1999). CASPubMed Google Scholar
Bayley, H. & Jayasinghe, L. Functional engineered channels and pores (Review). Mol. Membr. Biol.21, 209–220 (2004). CASPubMed Google Scholar
Majd, S. et al. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol.21, 439–476 (2010). CASPubMedPubMed Central Google Scholar
Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol.4, 497–505 (1997). CASPubMed Google Scholar
Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature413, 226–230 (2001). CASPubMed Google Scholar
Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem.61, 25–31 (2015). CASPubMed Google Scholar
Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science274, 1859–1866 (1996). CASPubMed Google Scholar
Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature398, 686–690 (1999). CASPubMed Google Scholar
Banerjee, A. et al. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proc. Natl Acad. Sci. USA107, 8165–8170 (2010). CAS Google Scholar
Walshaw, J. & Woolfson, D. N. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J. Mol. Biol.307, 1427–1450 (2001). CASPubMed Google Scholar
van den Berg, B., Prathyusha Bhamidimarri, S., Dahyabhai Prajapati, J., Kleinekathöfer, U. & Winterhalter, M. Outer-membrane translocation of bulky small molecules by passive diffusion. Proc. Natl Acad. Sci. USA112, E2991–E2999 (2015). CASPubMed Google Scholar
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280, 69–77 (1998). CASPubMed Google Scholar
Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature459, 726–730 (2009). CASPubMed Google Scholar
Miles, G., Movileanu, L. & Bayley, H. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci.11, 894–902 (2002). CASPubMedPubMed Central Google Scholar
Smart, O. S., Breed, J., Smith, G. R. & Sansom, M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys. J.72, 1109–1126 (1997). CASPubMedPubMed Central Google Scholar
Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature409, 720–724 (2001). CASPubMed Google Scholar
Wang, Y. et al. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife3, e01834 (2014). PubMedPubMed Central Google Scholar
Walker, B., Krishnasastry, M., Zorn, L. & Bayley, H. Assembly of the oligomeric membrane pore formed by staphylococcal alpha-hemolysin examined by truncation mutagenesis. J. Biol. Chem. 267, 21782–6 (1992). CASPubMed Google Scholar
Walker, B., Braha, O., Cheley, S. & Bayley, H. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch. Chem. Biol.2, 99–105 (1995). CASPubMed Google Scholar
Dunstone, M. A. & Tweten, R. K. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr. Opin. Struct. Biol.22, 342–349 (2012). CASPubMedPubMed Central Google Scholar
Leung, C. et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife3, e04247 (2014). PubMedPubMed Central Google Scholar
Stoddart, D. et al. Functional truncated membrane pores. Proc. Natl Acad. Sci. USA111, 2425–2430 (2014). CASPubMed Google Scholar
Karginov, V. A. Cyclodextrin derivatives as anti-infectives. Curr. Opin. Pharmacol.13, 717–725 (2013). CASPubMed Google Scholar
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3, 238–250 (2005). CASPubMed Google Scholar
Cirac, A. D. et al. The molecular basis for antimicrobial activity of pore-forming cyclic peptides. Biophys. J.100, 2422–2431 (2011). CASPubMedPubMed Central Google Scholar
Song, C. et al. Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc. Natl Acad. Sci. USA110, 4586–4591 (2013). CASPubMed Google Scholar
Haswell, E. S., Phillips, R. & Rees, D. C. Mechanosensitive channels: what can they do and how do they do it? Structure19, 1356–1369 (2011). CASPubMedPubMed Central Google Scholar
Naismith, J. H. & Booth, I. R. Bacterial mechanosensitive channels—MscS: evolution's solution to creating sensitivity in function. Annu. Rev. Biophys.41, 157–177 (2012). CASPubMedPubMed Central Google Scholar
Lee, J. & Bayley, H. Semisynthetic protein nanoreactor for single-molecule chemistry. Proc. Natl Acad. Sci. USA112, 13768–13773 (2015). CASPubMed Google Scholar
Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature412, 452–455 (2001). CASPubMed Google Scholar
Fjell, C. D., Hiss, J. A., Hancock, R. E. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov.11, 37–51 (2012). CAS Google Scholar
Hoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta1778, 357–375 (2008). CASPubMed Google Scholar
Gaspar, D., Veiga, A. S. & Castanho, M. A. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4, 294 (2013). PubMedPubMed Central Google Scholar
Mantri, S., Tanuj Sapra, K., Cheley, S., Sharp, T. H. & Bayley, H. An engineered dimeric protein pore that spans adjacent lipid bilayers. Nat. Commun.4, 1725 (2013). PubMedPubMed Central Google Scholar
Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K. R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc.10, 188–198 (2015). PubMed Google Scholar