Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases (original) (raw)
Fontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev.103, 2149–2166 (2003). ArticleCAS Google Scholar
Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol.17, 1072–1078 (2010). ArticleCAS Google Scholar
Wei, F.Y. et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest.121, 3598–3608 (2011). ArticleCAS Google Scholar
Atta, M. et al. _S_-Adenosylmethionine–dependent radical-based modification of biological macromolecules. Curr. Opin. Struct. Biol.20, 684–692 (2010). ArticleCAS Google Scholar
Kowalak, J.A. & Walsh, K.A. β-methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli. Protein Sci.5, 1625–1632 (1996). ArticleCAS Google Scholar
Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res.29, 1097–1106 (2001). ArticleCAS Google Scholar
Lee, K.H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry48, 10162–10174 (2009). ArticleCAS Google Scholar
Hernández, H.L. et al. MiaB, a bifunctional radical-_S_-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry46, 5140–5147 (2007). Article Google Scholar
Arragain, S. et al. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-_N_-6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem.285, 28425–28433 (2010). ArticleCAS Google Scholar
Arragain, S. et al. Post-translational modification of ribosomal proteins. structural and functional characterization of RimO from Thermotoga maritima, a radical _S_-adenosylmethionine methylthiotransferase. J. Biol. Chem.285, 5792–5801 (2010). ArticleCAS Google Scholar
Anantharaman, V., Koonin, E.V. & Aravind, L. TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiol. Lett.197, 215–221 (2001). ArticleCAS Google Scholar
Booker, S.J., Cicchillo, R.M. & Grove, T.L. Self-sacrifice in radical _S_-adenosylmethionine proteins. Curr. Opin. Chem. Biol.11, 543–552 (2007). ArticleCAS Google Scholar
Ugulava, N.B., Sacanell, C.J. & Jarrett, J.T. Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry40, 8352–8358 (2001). ArticleCAS Google Scholar
Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol.43, 63–88 (2008). ArticleCAS Google Scholar
Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-_S_-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem.279, 47555–47563 (2004). ArticleCAS Google Scholar
Vey, J.L. & Drennan, C.L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev.111, 2487–2506 (2011). ArticleCAS Google Scholar
Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol.13, 74–83 (2009). ArticleCAS Google Scholar
Zhang, Q. & Liu, W. Complex biotransformations catalyzed by radical _S_-adenosylmethionine enzymes. J. Biol. Chem.286, 30245–30252 (2011). ArticleCAS Google Scholar
Branden, C. & Tooze, J. Introduction to Protein Structure Vol. 2, 59–60 (Garland Publishing, New York, 1999).
Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res.38, W545–W549 (2010). ArticleCAS Google Scholar
Andreeva, A. et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res.36, D419–D425 (2008). ArticleCAS Google Scholar
Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry35, 11053–11061 (1996). ArticleCAS Google Scholar
Schnell, R., Agren, D. & Schneider, G. 1.9-Å structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.64, 1096–1100 (2008). ArticleCAS Google Scholar
Maris, A.E. et al. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct. Biol.9, 771–778 (2002). ArticleCAS Google Scholar
Porter, S.L., Wadhams, G.H. & Armitage, J.P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol.9, 153–165 (2011). ArticleCAS Google Scholar
Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T. & Drennan, C.L. Crystal structure of biotin synthase, an _S_-adenosylmethionine–dependent radical enzyme. Science303, 76–79 (2004). ArticleCAS Google Scholar
Hänzelmann, P. & Schindelin, H. Crystal structure of the _S_-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl. Acad. Sci. USA101, 12870–12875 (2004). Article Google Scholar
Lees, N.S. et al. ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the _S_-adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J. Am. Chem. Soc.131, 9184–9185 (2009). ArticleCAS Google Scholar
Zheng, B., Chen, X.D., Zheng, S.L. & Holm, R.H. Selenium as a structural surrogate of sulfur: template-assisted assembly of five types of tungsten-iron-sulfur/selenium clusters and the structural fate of chalcogenide reactants. J. Am. Chem. Soc.134, 6479–6490 (2012). ArticleCAS Google Scholar
Wilker, J.J. & Lippard, S.J. Methylation of iron-sulfur complexes by trimethyl phosphate. Inorg. Chem.38, 3569–3574 (1999). ArticleCAS Google Scholar
Petrey, D. & Honig, B. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol.374, 492–509 (2003). ArticleCAS Google Scholar
Iwig, D.F. & Booker, S.J. Insight into the polar reactivity of the onium chalcogen analogues of _S_-adenosyl-L-methionine. Biochemistry43, 13496–13509 (2004). ArticleCAS Google Scholar
Tse Sum Bui, B., Mattioli, T.A., Florentin, D., Bolbach, G. & Marquet, A. Escherichia coli biotin synthase produces selenobiotin. Further evidence of the involvement of the [2Fe-2S]2+ cluster in the sulfur insertion step. Biochemistry45, 3824–3834 (2006). Article Google Scholar
Syper, L. & Mlochowski, J. The convenient syntheses of organoselenium reagents. Synthesis, 439–442 (1984).
Fish, W.W. Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol.158, 357–364 (1988). ArticleCAS Google Scholar
Beinert, H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron sulfur proteins. Anal. Biochem.131, 373–378 (1983). ArticleCAS Google Scholar
Then, J. & Truper, H.G. Sulfide oxidation in _Ectothiorhodospira abdelmalekii_—evidence for the catalytic role of cytochrome c-551. Arch. Microbiol.135, 254–258 (1983). ArticleCAS Google Scholar
Pierrel, F., Hernandez, H.L., Johnson, M.K., Fontecave, M. & Atta, M. MiaB protein from _Thermotoga maritima_—characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem.278, 29515–29524 (2003). ArticleCAS Google Scholar
Gehrke, C.W. & Kuo, K.C. Ribonucleoside analysis by reversed-phase high-performance liquid-chromatography. J. Chromatogr.471, 3–36 (1989). ArticleCAS Google Scholar
te Velde, G. & Baerends, E.J. Numerical integration for polyatomic systems. J. Comput. Phys.99, 84–98 (1992). ArticleCAS Google Scholar
Vosko, S.H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can. J. Phys.58, 1200–1211 (1980). ArticleCAS Google Scholar
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A38, 3098–3100 (1988). ArticleCAS Google Scholar
Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter33, 8822–8824 (1986). ArticleCAS Google Scholar
Szilagyi, R.K. & Winslow, M.A. On the accuracy of density functional theory for iron-sulfur clusters. J. Comput. Chem.27, 1385–1397 (2006). ArticleCAS Google Scholar
Noodleman, L., Peng, C.Y., Case, D.A. & Mouesca, J.M. Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord. Chem. Rev.144, 199–244 (1995). ArticleCAS Google Scholar
Acton, T.B. et al. Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol.394, 210–243 (2005). ArticleCAS Google Scholar
Jansson, M. et al. High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J. Biomol. NMR7, 131–141 (1996). ArticleCAS Google Scholar
Doublié, S. et al. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett.384, 219–221 (1996). Article Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A.276, 307–326 (1997). ArticleCAS Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
McRee, D.E. XtalView Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol.125, 156–165 (1999). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). Article Google Scholar