Mammalian circadian signaling networks and therapeutic targets (original) (raw)
Toh, K.L. et al. An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome. Science291, 1040–1043 (2001). CAS Google Scholar
Xu, Y. et al. Functional consequences of a CKI delta mutation causing familial advanced sleep phase syndrome. Nature434, 640–644 (2005). CASPubMed Google Scholar
Ueda, H.R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet.37, 187–192 (2005). CASPubMed Google Scholar
Young, M.W. & Kay, S.A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet.2, 702–715 (2001). CASPubMed Google Scholar
Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature418, 935–941 (2002). CASPubMed Google Scholar
Gallego, M. & Virshup, D.M. Post-translational modifications relgulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol.8, 139–148 (2007). CASPubMed Google Scholar
Yoo, S.H. et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA101, 5339–5346 (2004). CASPubMed Google Scholar
Welsh, D.K., Yoo, S.H., Liu, A.C., Takahashi, J.S. & Kay, S.A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol.14, 2289–2295 (2004). CASPubMedPubMed Central Google Scholar
Liu, A.C. et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell129, 605–616 (2007). CASPubMedPubMed Central Google Scholar
Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell119, 693–705 (2004). CASPubMed Google Scholar
van den Pol, A.N. & Dudek, F.E. Cellular communication in the circadian clock, the suprachiasmatic nucleus. Neuroscience56, 793–811 (1993). CASPubMed Google Scholar
Low-Zeddies, S.S. & Takahashi, J.S. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell105, 25–42 (2001). CASPubMedPubMed Central Google Scholar
Welsh, D.K., Logothetis, D.E., Meister, M. & Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron14, 697–706 (1995). CASPubMed Google Scholar
Aton, S.J. & Herzog, E.D. Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron48, 531–534 (2005). CASPubMedPubMed Central Google Scholar
Nakamura, W., Honma, S., Shirakawa, T. & Honma, K. Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat. Neurosci.5, 399–400 (2002). CASPubMed Google Scholar
Herzog, E.D., Aton, S.J., Numano, R., Sakaki, Y. & Tei, H. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythms19, 35–46 (2004). PubMed Google Scholar
Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature441, 719–723 (2006). CASPubMed Google Scholar
Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA103, 1313–1318 (2006). CASPubMed Google Scholar
Foster, R.G. et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. [A]169, 39–50 (1991). CAS Google Scholar
Panda, S. et al. Illumination of the melanopsin signaling pathway. Science307, 600–604 (2005). CASPubMed Google Scholar
Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature433, 741–745 (2005). CASPubMed Google Scholar
Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature433, 745–749 (2005). CASPubMed Google Scholar
Dacey, D.M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature433, 749–754 (2005). CASPubMed Google Scholar
Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science295, 1065–1070 (2002). CASPubMedPubMed Central Google Scholar
Berson, D.M., Dunn, F.A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science295, 1070–1073 (2002). CASPubMed Google Scholar
Freedman, M.S. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science284, 502–504 (1999). CASPubMed Google Scholar
Panda, S. et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science298, 2213–2216 (2002). CASPubMed Google Scholar
Ruby, N.F. et al. Role of melanopsin in circadian responses to light. Science298, 2211–2213 (2002). CASPubMed Google Scholar
Lucas, R.J. et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science299, 245–247 (2003). CASPubMed Google Scholar
Hattar, S. et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature424, 76–81 (2003). CASPubMedPubMed Central Google Scholar
Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science301, 525–527 (2003). CASPubMed Google Scholar
Meijer, J.H. & Schwartz, W.J. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms18, 235–249 (2003). PubMed Google Scholar
Antle, M.C. & Silver, R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci.28, 145–151 (2005). CASPubMed Google Scholar
Morris, M.E., Viswanathan, N., Kuhlman, S., Davis, F.C. & Weitz, C.J. A screen for genes induced in the suprachiasmatic nucleus by light. Science279, 1544–1547 (1998). CASPubMed Google Scholar
Ginty, D.D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science260, 238–241 (1993). CASPubMed Google Scholar
Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M. & Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA99, 7728–7733 (2002). CASPubMed Google Scholar
Tischkau, S.A., Mitchell, J.W., Tyan, S.H., Buchanan, G.F. & Gillette, M.U. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem.278, 718–723 (2003). CASPubMed Google Scholar
Gillette, M.U. & Mitchell, J.W. Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res.309, 99–107 (2002). CASPubMed Google Scholar
Tischkau, S.A. et al. Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron43, 539–549 (2004). CASPubMed Google Scholar
Yamaguchi, S. et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science302, 1408–1412 (2003). CASPubMed Google Scholar
Albus, H. et al. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr. Biol.12, 1130–1133 (2002). CASPubMed Google Scholar
Liu, C., Weaver, D.R., Strogatz, S.H. & Reppert, S.M. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell91, 855–860 (1997). CASPubMed Google Scholar
Herzog, E.D., Takahashi, J.S. & Block, G.D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci.1, 708–713 (1998). CASPubMed Google Scholar
Liu, C. & Reppert, S.M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron25, 123–128 (2000). CASPubMed Google Scholar
Albus, H., Vansteensel, M.J., Michel, S., Block, G.D. & Meijer, J.H.A. GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol.15, 886–893 (2005). CASPubMed Google Scholar
Harmar, A.J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell109, 497–508 (2002). CAS Google Scholar
Colwell, C.S. et al. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.285, R939–R949 (2003). CASPubMed Google Scholar
Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J. & Herzog, E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci.8, 476–483 (2005). CASPubMedPubMed Central Google Scholar
Maywood, E.S. et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Biol.16, 599–605 (2006). CASPubMed Google Scholar
Cutler, D.J. et al. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci.17, 197–204 (2003). PubMed Google Scholar
Aida, R. et al. Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol. Pharmacol.61, 26–34 (2002). CASPubMed Google Scholar
Piggins, H.D., Antle, M.C. & Rusak, B. Neuropeptides phase shift the mammalian circadian pacemaker. J. Neurosci.15, 5612–5622 (1995). CASPubMed Google Scholar
McArthur, A.J. et al. Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro. J. Neurosci.20, 5496–5502 (2000). CASPubMed Google Scholar
Brown, T.M., Hughes, A.T. & Piggins, H.D. Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J. Neurosci.25, 11155–11164 (2005). CASPubMed Google Scholar
Long, M.A., Jutras, M.J., Connors, B.W. & Burwell, R.D. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat. Neurosci.8, 61–66 (2005). CASPubMed Google Scholar
Nitabach, M.N., Blau, J. & Holmes, T.C. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell109, 485–495 (2002). CASPubMed Google Scholar
Aton, S.J., Huettner, J.E., Straume, M. & Herzog, E.D. GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc. Natl. Acad. Sci. USA103, 19188–19193 (2006). CASPubMed Google Scholar
Kuhlman, S.J. & McMahon, D.G. Encoding the ins and outs of circadian pacemaking. J. Biol. Rhythms21, 470–481 (2006). CASPubMed Google Scholar
Buijs, R.M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci.2, 521–526 (2001). CASPubMed Google Scholar
Kalsbeek, A. et al. SCN outputs and the hypothalamic balance of life. J. Biol. Rhythms21, 458–469 (2006). CASPubMed Google Scholar
Schibler, U., Ripperger, J. & Brown, S.A. Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms18, 250–260 (2003). PubMed Google Scholar
Silver, R., LeSauter, J., Tresco, P.A. & Lehman, M.N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature382, 810–813 (1996). CASPubMed Google Scholar
Pando, M.P., Morse, D., Cermakian, N. & Sassone-Corsi, P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell110, 107–117 (2002). CASPubMed Google Scholar
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell109, 307–320 (2002). CASPubMed Google Scholar
Abrahamson, E.E., Leak, R.K. & Moore, R.Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport12, 435–440 (2001). CASPubMed Google Scholar
Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell96, 57–68 (1999). CASPubMed Google Scholar
Tousson, E. & Meissl, H. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J. Neurosci.24, 2983–2988 (2004). CASPubMed Google Scholar
Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science294, 2511–2515 (2001). CASPubMed Google Scholar
Cheng, M.Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature417, 405–410 (2002). CASPubMed Google Scholar
Kraves, S. & Weitz, C.J. A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat. Neurosci.9, 212–219 (2006). CASPubMed Google Scholar
Prosser, H.M. et al. Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc. Natl. Acad. Sci. USA104, 648–653 (2007). CASPubMed Google Scholar
Li, J.D. et al. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J. Neurosci.26, 11615–11623 (2006). CASPubMedPubMed Central Google Scholar
Balsalobre, A. et al. Resetting of circadian time peripheral tissues by glucocorticoid signaling. Science289, 2344–2347 (2000). CASPubMed Google Scholar
Jusko, W.J. Pharmacokinetics and receptor-mediated pharmacodynamics of corticosteroids. Toxicology102, 189–196 (1995). CASPubMed Google Scholar
Hastings, M.H., Reddy, A.B. & Maywood, E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci.4, 649–661 (2003). CASPubMed Google Scholar
Labrecque, G., Bureau, J.P. & Reinberg, A.E. Biological rhythms in the inflammatory response and in the effects of nonsteroidal antiinflammatory drugs. Pharmacol. Ther.66, 285–300 (1995). CASPubMed Google Scholar
Mormont, M.C. & Levi, F. Cancer chronotherapy: principles, applications, and perspectives. Cancer97, 155–169 (2003). CASPubMed Google Scholar
Levi, F. & Schibler, U. Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol.47, 593–628 (2007). CASPubMed Google Scholar
Pace-Schott, E.F. & Hobson, J.A. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci.3, 591–605 (2002). CASPubMed Google Scholar
Dijk, D. & von Schantz, M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J. Biol. Rhythms20, 279–290 (2005). PubMed Google Scholar
Morin, A.K., Jarvis, C.I. & Lynch, A.M. Therapeutic options for sleep-maintenance and sleep-onset insomnia. Pharmacotherapy27, 89–110 (2007). CASPubMed Google Scholar
Atack, J.R. The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert Opin. Investig. Drugs14, 601–618 (2005). CAS Google Scholar
Borjigin, J., Li, X.D. & Snyder, S.H. The pineal gland and melatonin: molecular and pharmacologic regulation. Annu. Rev. Pharmacol. Toxicol.39, 53–65 (1999). CASPubMed Google Scholar
Kato, K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology48, 301–310 (2005). CASPubMed Google Scholar
Carrillo-Vico, A., Guerrero, J.M., Lardone, P.J. & Reiter, R.J. A review of the multiple actions of melatonin on the immune system. Endocrine27, 189–200 (2005). CASPubMed Google Scholar
Yin, L., Wang, J., Klein, P.S. & Lazar, M.A. Nuclear receptor Rev-erba is a critical lithium-sensitive component of the circadian clock. Science311, 1002–1005 (2006). CASPubMed Google Scholar
Preitner, N. et al. The orphan nuclear receptor REV-ERB alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell110, 251–260 (2002). CASPubMed Google Scholar
Iitaka, C., Miyazaki, K., Akaike, T. & Ishida, N. A role for glycogen synthase kinase-3 beta in the mammalian circadian clock. J. Biol. Chem.280, 29397–29402 (2005). CASPubMed Google Scholar
Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev.14, 2950–2961 (2000). CASPubMedPubMed Central Google Scholar
Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science291, 490–493 (2001). CASPubMed Google Scholar
Vitaterna, M.H. et al. The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proc. Natl. Acad. Sci. USA103, 9327–9332 (2006). CASPubMed Google Scholar
Brisbare-Roch, C. et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med.13, 150–155 (2007). CASPubMed Google Scholar
Brown, S.A. et al. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol.3, e338 (2005). PubMedPubMed Central Google Scholar
Missbach, M. et al. Thiazolidine diones, specific ligands of the nuclear receptor retinoid Z receptor/retinoid acid receptor-related orphan receptor alpha with potent antiarthritic activity. J. Biol. Chem.271, 13515–13522 (1996). CASPubMed Google Scholar
Littman, D.R. et al. The role of the nuclear hormone receptor ROR gamma in the development of lymph nodes and Peyer's patches. Immunol. Rev.195, 81–90 (2003). PubMed Google Scholar
Boukhtouche, F., Mariani, J. & Tedgui, A. The “CholesteROR” protective pathway in the vascular system. Arterioscler. Thromb. Vasc. Biol.24, 637–643 (2004). CASPubMed Google Scholar
Eide, E.J. et al. Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol.25, 2795–2807 (2005). CASPubMedPubMed Central Google Scholar
Siepka, S.M. et al. The circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryprochrome and period gene expression. Cell129, 1011–1023 (2007). CASPubMedPubMed Central Google Scholar
Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science316, 900–904 (2007). CASPubMed Google Scholar
Godinho, S.I.H. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science316, 897–900 (2007). CASPubMed Google Scholar
Kornmann, B., Schaad, O., Bujard, H., Takahashi, J.S. & Schibler, U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol.5, e34 (2007). PubMedPubMed Central Google Scholar
Brown, S.A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. & Schibler, U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol.12, 1574–1583 (2002). CASPubMed Google Scholar