- Hanover, J.A., Krause, M.W. & Love, D.C. The hexosamine signaling pathway: _O_-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800, 80–95 (2009).
Article Google Scholar
- Rexach, J.E., Clark, P.M. & Hsieh-Wilson, L.C. Chemical approaches to understanding _O_-GlcNAc glycosylation in the brain. Nat. Chem. Biol. 4, 97–106 (2008).
Article CAS Google Scholar
- Hart, G.W., Housley, M.P. & Slawson, C. Cycling of _O_-linked beta-_N_-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).
Article CAS Google Scholar
- Dentin, R., Hedrick, S., Xie, J., Yates, J. III & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402–1405 (2008).
Article CAS Google Scholar
- Ngoh, G.A. et al. Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ. Res. 104, 41–49 (2009).
Article CAS Google Scholar
- Slawson, C. et al. Perturbations in _O_-linked beta-_N_-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280, 32944–32956 (2005).
Article CAS Google Scholar
- Tallent, M.K. et al. In vivo modulation of _O_-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J. Biol. Chem. 284, 174–181 (2009).
Article CAS Google Scholar
- Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the _O_-GlcNAc proteome: direct identification of _O_-GlcNAc–modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).
Article CAS Google Scholar
- Clark, P.M. et al. Direct in-gel fluorescence detection and cellular imaging of _O_-GlcNAc–modified proteins. J. Am. Chem. Soc. 130, 11576–11577 (2008).
Article CAS Google Scholar
- Wang, Z. et al. Enrichment and site-mapping of _O_-linked _N_-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation (ETD) mass spectrometry. Mol. Cell. Proteomics 9, 153–160 (2009).
Article Google Scholar
- Arnold, C.S. et al. The microtubule-associated protein tau is extensively modified with _O_-linked _N_-acetylglucosamine. J. Biol. Chem. 271, 28741–28744 (1996).
Article CAS Google Scholar
- Dong, D.L., Xu, Z.S., Hart, G.W. & Cleveland, D.W. Cytoplasmic _O_-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem. 271, 20845–20852 (1996).
Article CAS Google Scholar
- Jackson, S.P. & Tjian, R. _O_-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133 (1988).
Article CAS Google Scholar
- Lüthi, T., Haltiwanger, R.S., Greengard, P. & Bahler, M. Synapsins contain _O_-linked _N_-acetylglucosamine. J. Neurochem. 56, 1493–1498 (1991).
Article Google Scholar
- Roquemore, E.P. et al. Vertebrate lens alpha-crystallins are modified by _O_-linked _N_-acetylglucosamine. J. Biol. Chem. 267, 555–563 (1992).
CAS PubMed Google Scholar
- Teo, C.F. et al. Glycopeptide-specific monoclonal antibodies suggest new roles for _O_-GlcNAc. Nat. Chem. Biol. 6, 338–343 (2010).
Article CAS Google Scholar
- Wang, Z., Gucek, M. & Hart, G.W. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated _O_-GlcNAc. Proc. Natl. Acad. Sci. USA 105, 13793–13798 (2008).
Article CAS Google Scholar
- Dias, W.B., Cheung, W.D., Wang, Z. & Hart, G.W. Regulation of calcium/calmodulin-dependent kinase IV by _O_-GlcNAc modification. J. Biol. Chem. 284, 21327–21337 (2009).
Article CAS Google Scholar
- Yang, X. et al. Phosphoinositide signalling links _O_-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).
Article CAS Google Scholar
- Wells, L., Kreppel, L.K., Comer, F.I., Wadzinski, B.E. & Hart, G.W. _O_-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J. Biol. Chem. 279, 38466–38470 (2004).
Article CAS Google Scholar
- Veronese, F.M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).
Article CAS Google Scholar
- Khidekel, N. et al. A chemoenzymatic approach toward the rapid and sensitive detection of _O_-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162–16163 (2003).
Article CAS Google Scholar
- Ramakrishnan, B. & Qasba, P.K. Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833–20839 (2002).
Article CAS Google Scholar
- Holt, G.D. & Hart, G.W. The subcellular distribution of terminal _N_-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, _O_-linked GlcNAc. J. Biol. Chem. 261, 8049–8057 (1986).
CAS PubMed Google Scholar
- Lamarre-Vincent, N. & Hsieh-Wilson, L.C. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612–6613 (2003).
Article CAS Google Scholar
- Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).
Article CAS Google Scholar
- Holt, G.D. et al. Nuclear pore complex glycoproteins contain cytoplasmically disposed _O_-linked _N_-acetylglucosamine. J. Cell Biol. 104, 1157–1164 (1987).
Article CAS Google Scholar
- Fyffe, S.L. et al. Deletion of Mecp2 in _Sim1_-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59, 947–958 (2008).
Article CAS Google Scholar
- Khidekel, N. et al. Probing the dynamics of _O_-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).
Article CAS Google Scholar
- Marshall, S., Bacote, V. & Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).
CAS Google Scholar
- Medina, L., Grove, K. & Haltiwanger, R.S. SV40 large T antigen is modified with _O_-linked _N_-acetylglucosamine but not with other forms of glycosylation. Glycobiology 8, 383–391 (1998).
Article CAS Google Scholar
- Cheng, X., Cole, R.N., Zaia, J. & Hart, G.W. Alternative _O_-glycosylation/_O_-phosphorylation of the murine estrogen receptor beta. Biochemistry 39, 11609–11620 (2000).
Article CAS Google Scholar
- Yang, W.H. et al. Modification of p53 with _O_-linked _N_-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).
Article CAS Google Scholar
- Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
Article CAS Google Scholar
- Carlezon, W.A. Jr., Duman, R.S. & Nestler, E.J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).
Article CAS Google Scholar
- Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).
Article CAS Google Scholar
- Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. USA 106, 4882–4887 (2009).
Article CAS Google Scholar
- Tai, H.C., Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Parallel identification of _O_-GlcNAc–modified proteins from cell lysates. J. Am. Chem. Soc. 126, 10500–10501 (2004).
Article CAS Google Scholar