Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase (original) (raw)
Chen, Z.J. & Sun, L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell33, 275–286 (2009). ArticleCAS Google Scholar
Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans.37, 937–953 (2009). ArticleCAS Google Scholar
Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep.9, 536–542 (2008). ArticleCASPubMed Google Scholar
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21, 921–926 (2003). ArticleCAS Google Scholar
Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137, 133–145 (2009). ArticleCASPubMed Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep.10, 466–473 (2009). ArticleCASPubMed Google Scholar
Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol.10, 659–671 (2009). ArticleCAS Google Scholar
Wang, H. et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc. Natl. Acad. Sci. USA105, 20197–20202 (2008). ArticleCAS Google Scholar
Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell134, 668–678 (2008). ArticleCAS Google Scholar
Bremm, A., Freund, S.M.V. & Komander, D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolysed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol.17, 939–947 (2010). ArticleCASPubMed Google Scholar
McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R. & Muir, T. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature453, 812–816 (2008). ArticleCASPubMed Google Scholar
Yang, R., Pasunooti, K., Li, F., Liu, X. & Liu, C. Dual native chemical ligation at lysine. J. Am. Chem. Soc.131, 13592–13593 (2009). ArticleCAS Google Scholar
Ajish Kumar, K.S., Haj-Yahya, M., Olschewski, D., Lashuel, H.A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Edn Engl.48, 8090–8094 (2009). ArticleCAS Google Scholar
Li, X., Fekner, T., Ottesen, J.J. & Chan, M.K. A pyrrolysine analogue for site-specific protein ubiquitination. Angew. Chem. Int. Edn Engl.48, 9184–9187 (2009). ArticleCAS Google Scholar
Hodgins, R.R., Ellison, K.S. & Ellison, M.J. Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J. Biol. Chem.267, 8807–8812 (1992). CASPubMed Google Scholar
Tran, H., Hamada, F., Schwarz-Romond, T. & Bienz, M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev.22, 528–542 (2008). ArticleCASPubMed Google Scholar
Srinivasan, G., James, C.M. & Krzycki, J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science296, 1459–1462 (2002). ArticleCASPubMed Google Scholar
Ambrogelly, A. et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl. Acad. Sci. USA104, 3141–3146 (2007). ArticleCAS Google Scholar
Polycarpo, C.R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett.580, 6695–6700 (2006). ArticleCASPubMed Google Scholar
Kawakami, T. et al. Polypeptide synthesis using an expressed peptide as a building block for condensation with a peptide thioester: application to the synthesis of phosphorylated p21Max protein(1–101). J. Pept. Sci.7, 474–487 (2001). ArticleCAS Google Scholar
Aimoto, S. Polypeptide synthesis by the thioester method. Biopolymers51, 247–265 (1999). ArticleCAS Google Scholar
Tan, Z., Shang, S., Halkina, T., Yuan, Y. & Danishefsky, S.J. Toward homogeneous erythropoietin: non-NCL-based chemical synthesis of the Gln(78)-Arg(166) glycopeptide domain. J. Am. Chem. Soc.131, 5424–5431 (2009). ArticleCASPubMed Google Scholar
Tam, J.P., Heath, W.F. & Merrifield, R.B. Mechanisms for the removal of benzyl protecting groups in synthetic peptides by trifluoromethanesulfonic acid trifluoroacetic-acid dimethyl sulfide. J. Am. Chem. Soc.8, 5242–5251 (1986). Article Google Scholar
Pickart, C.M. & Raasi, S. Controlled synthesis of polyubiquitin Chains. Methods Enzymol.399, 21–36 (2005). ArticleCAS Google Scholar
Komander, D., Clague, M.J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol.10, 550–563 (2009). ArticleCAS Google Scholar
Fushman, D. & Walker, O. Exploring linkage dependence of polyubiquitin conformations using molecular modeling. J. Mol. Biol.395, 803–814 (2010). ArticleCAS Google Scholar
Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol.386, 1011–1023 (2009). ArticleCASPubMed Google Scholar
Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J.28, 621–631 (2009). ArticleCASPubMed Google Scholar
Popp, M.W., Artavanis-Tsakonas, K. & Ploegh, H.L. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J. Biol. Chem.284, 3593–3602 (2009). ArticleCASPubMed Google Scholar
Reyes-Turcu, F.E. et al. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell124, 1197–1208 (2006). ArticleCAS Google Scholar
Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell29, 451–464 (2008). ArticleCAS Google Scholar
McCullough, J., Clague, M.J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol.166, 487–492 (2004). ArticleCASPubMed Google Scholar
Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature455, 358–362 (2008). ArticleCAS Google Scholar
Winborn, B.J. et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem.283, 26436–26443 (2008). ArticleCASPubMed Google Scholar
Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep.10, 466–473 (2009). ArticleCASPubMed Google Scholar
Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol.386, 1011–1023 (2009). ArticleCASPubMed Google Scholar
Cooper, E.M., Boeke, J.D. & Cohen, R.E. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J. Biol. Chem.285, 10344–10352 (2010). ArticleCAS Google Scholar
Cook, W.J., Jeffrey, L.C., Carson, M., Chen, Z. & Pickart, C.M. Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J. Biol. Chem.267, 16467–16471 (1992). CAS Google Scholar
Eddins, M.J., Varadan, R., Fushman, D., Pickart, C.M. & Wolberger, C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J. Mol. Biol.367, 204–211 (2007). ArticleCAS Google Scholar
Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem.278, 34743–34746 (2003). ArticleCAS Google Scholar
Nishikawa, H. et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res.69, 111–119 (2009). ArticleCAS Google Scholar