The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase (original) (raw)

References

  1. Anfinsen, C.B. Principles that govern folding of protein chains. Science 181, 223–230 (1973).
    Article CAS Google Scholar
  2. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).
    Article CAS Google Scholar
  3. Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).
    Article CAS Google Scholar
  4. Wiech, H., Buchner, J., Zimmermann, R. & Jakob, U. Hsp90 chaperones protein folding in vitro. Nature 358, 169–170 (1992).
    Article CAS Google Scholar
  5. Schröder, H., Langer, T., Hartl, F.U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993).
    Article Google Scholar
  6. Cheng, M.Y. et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).
    Article CAS Google Scholar
  7. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).
    Article CAS Google Scholar
  8. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520 (1993).
    CAS PubMed Google Scholar
  9. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).
    Article CAS Google Scholar
  10. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).
    Article Google Scholar
  11. Rüdiger, S., Schneider-Mergener, J. & Bukau, B. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20, 1042–1050 (2001).
    Article Google Scholar
  12. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).
    Article CAS Google Scholar
  13. Hinault, M.P., Ben-Zvi, A. & Goloubinoff, P. Chaperones and proteases:cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30, 249–265 (2006).
    Article CAS Google Scholar
  14. Azem, A., Diamant, S., Kessel, M., Weiss, C. & Goloubinoff, P. The protein—folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc. Natl. Acad. Sci. USA 92, 12021–12025 (1995).
    Article CAS Google Scholar
  15. Diamant, S., Azem, A., Weiss, C. & Goloubinoff, P. Effect of free and ATP-bound magnesium and manganese ions on the ATPase activity of chaperonin GroEL14. Biochemistry 34, 273–277 (1995).
    Article CAS Google Scholar
  16. Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352, 36–42 (1991).
    Article CAS Google Scholar
  17. Ben-Zvi, A., De los Rios, P., Dietler, G. & Goloubinoff, P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 279, 37298–37303 (2004).
    Article CAS Google Scholar
  18. Diamant, S., Ben-Zvi, A.P., Bukau, B. & Goloubinoff, P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275, 21107–21113 (2000).
    Article CAS Google Scholar
  19. Diamant, S. & Goloubinoff, P. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: Protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37, 9688–9694 (1998).
    Article CAS Google Scholar
  20. Skowyra, D., Georgopoulos, C. & Zylicz, M. The E. coli dnaK gene product, the Hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62, 939–944 (1990).
    Article CAS Google Scholar
  21. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).
    Article CAS Google Scholar
  22. Schuermann, J.P. et al. Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).
    Article CAS Google Scholar
  23. Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).
    Article CAS Google Scholar
  24. Goloubinoff, P., Mogk, A., Ben Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).
    Article CAS Google Scholar
  25. Szabo, A. et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).
    Article CAS Google Scholar
  26. Diamant, S., Azem, A., Weiss, C. & Goloubinoff, P. Increased efficiency of GroE-assisted protein-folding by manganese ions. J. Biol. Chem. 270, 28387–28391 (1995).
    Article CAS Google Scholar
  27. Sharma, S.K., Christen, P. & Goloubinoff, P. Disaggregating chaperones: An unfolding story. Curr. Protein Pept. Sci. 10, 432–446 (2009).
    Article CAS Google Scholar
  28. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. USA 103, 6166–6171 (2006).
    Article CAS Google Scholar
  29. Svetlov, M.S., Kolb, V.A. & Spirin, A.S. Folding of the firefly luciferase polypeptide chain with the immobilized C terminus. Mol. Biol. 41, 86–92 (2007).
    Article CAS Google Scholar
  30. Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).
    Article CAS Google Scholar
  31. Fishbein, W.N. & Winkert, J.W. in Proteins at Low Temperatures, Vol. 180 (ed. Fennema, O.) 55–82 (American Chemical Society, 1979).
  32. Barouch, W., Prasad, K., Greene, L. & Eisenberg, E. Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36, 4303–4308 (1997).
    Article CAS Google Scholar
  33. Han, W. & Christen, P. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J. Biol. Chem. 278, 19038–19043 (2003).
    Article CAS Google Scholar
  34. Laufen, T. et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452–5457 (1999).
    Article CAS Google Scholar
  35. Brehmer, D., Gassler, C., Rist, W., Mayer, M.P. & Bukau, B. Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem. 279, 27957–27964 (2004).
    Article CAS Google Scholar
  36. Mally, A. & Witt, S.N. GrpE accelerates peptide binding and release from the high affinity state of DnaK. Nat. Struct. Biol. 8, 254–257 (2001).
    Article CAS Google Scholar
  37. Hu, B., Mayer, M.P. & Tomita, M. Modeling Hsp70-mediated protein folding. Biophys. J. 91, 496–507 (2006).
    Article CAS Google Scholar
  38. Mayer, M.P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).
    Article CAS Google Scholar
  39. Popp, S. et al. Structural dynamics of the DnaK-peptide complex. J. Mol. Biol. 347, 1039–1052 (2005).
    Article CAS Google Scholar
  40. Bertelsen, E.B., Chang, L., Gestwicki, J.E. & Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106, 8471–8476 (2009).
    Article CAS Google Scholar
  41. Goloubinoff, P. & De Los Rios, P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).
    Article CAS Google Scholar
  42. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69, 833–842 (1992).
    Article CAS Google Scholar
  43. Rodriguez, F. et al. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol. Cell 32, 347–358 (2008).
    Article CAS Google Scholar
  44. Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22 (2005).
    Article CAS Google Scholar
  45. Feifel, B., Sandmeier, E., Schonfeld, H.J. & Christen, P. Potassium ions and the molecular-chaperone activity of DnaK. Eur. J. Biochem. 237, 318–321 (1996).
    Article CAS Google Scholar
  46. Hellebust, H., Uhlen, M. & Enfors, S.O. Interaction between heat-shock protein Dnak and recombinant staphylococcal protein-A. J. Bacteriol. 172, 5030–5034 (1990).
    Article CAS Google Scholar
  47. Schönfeld, H.J., Schmidt, D., Schroder, H. & Bukau, B. The Dnak chaperone system of E_scherichia coli_—quaternary structures and interactions of the Dnak and Grpe components. J. Biol. Chem. 270, 2183–2189 (1995).
    Article Google Scholar
  48. Bischofberger, P., Han, W.J., Feifel, B., Schonfeld, H.J. & Christen, P. D-Peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. J. Biol. Chem. 278, 19044–19047 (2003).
    Article CAS Google Scholar

Download references