Oxysterols are allosteric activators of the oncoprotein Smoothened (original) (raw)
Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev.22, 2454–2472 (2008). ArticleCAS Google Scholar
Murone, M., Rosenthal, A. & de Sauvage, F.J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol.9, 76–84 (1999). ArticleCAS Google Scholar
Stone, D.M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature384, 129–134 (1996). ArticleCAS Google Scholar
Marigo, V. et al. Biochemical evidence that patched is the Hedgehog receptor. Nature384, 176–179 (1996). ArticleCAS Google Scholar
Barakat, M.T., Humke, E.W. & Scott, M.P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med.16, 337–348 (2010). ArticleCAS Google Scholar
Cooper, M.K., Porter, J.A., Young, K.E. & Beachy, P.A. Teratogen-mediated inhibited of target tissue response to Shh signaling. Science280, 1603–1607 (1998). ArticleCAS Google Scholar
Chen, J.K. et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev.16, 2743–2748 (2002). ArticleCAS Google Scholar
Heretsch, P., Tzagkaroulaki, L. & Giannis, A. Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew. Chem. Int. Ed. Engl.49, 3418–3427 (2010). ArticleCAS Google Scholar
Chen, J.K. et al. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA99, 14071–14076 (2002). ArticleCAS Google Scholar
Sinha, S. & Chen, J.K. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol.2, 29–30 (2006). ArticleCAS Google Scholar
Romer, J.T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice. Cancer Cell6, 229–240 (2004). ArticleCAS Google Scholar
Corcoran, R.B. & Scott, M.P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. USA103, 8408–8413 (2006). ArticleCAS Google Scholar
Dwyer, J.R. et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem.282, 8959–8968 (2007). ArticleCAS Google Scholar
Johnson, J.S. et al. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J. Cell Biochem.112, 1673–1684 (2011). ArticleCAS Google Scholar
Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science317, 372–376 (2007). ArticleCAS Google Scholar
Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature437, 1018–1021 (2005). ArticleCAS Google Scholar
LeBlanc, M.A. & McMaster, C.R. Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-trans-Golgi trafficking pathways. J. Biol. Chem.285, 33875–33884 (2010). ArticleCAS Google Scholar
Radhakrishnan, A. et al. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA104, 6511–6518 (2007). ArticleCAS Google Scholar
Janowski, B.A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl. Acad. Sci. USA96, 266–271 (1999). ArticleCAS Google Scholar
Chen, W. et al. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab.5, 73–79 (2007). ArticleCAS Google Scholar
Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature475, 524–527 (2011). ArticleCAS Google Scholar
Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature475, 519–523 (2011). ArticleCAS Google Scholar
Panini, S.R. & Sinensky, M.S. Mechanisms of oxysterol-induced apoptosis. Curr. Opin. Lipidol.12, 529–533 (2001). ArticleCAS Google Scholar
Park, K. & Scott, A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol.88, 1081–1087 (2010). ArticleCAS Google Scholar
Theunissen, J.J. et al. Membrane properties of oxysterols. Interfacial orientation, influence on membrane permeability and redistribution between membranes. Biochim. Biophys. Acta860, 66–74 (1986). ArticleCAS Google Scholar
Rentero, C. et al. Functional implications of plasma membrane condensation for T cell activation. PLoS ONE3, e2262 (2008). Article Google Scholar
Olkkonen, V.M. & Hynynen, R. Interactions of oxysterols with membranes and proteins. Mol. Aspects Med.30, 123–133 (2009). ArticleCAS Google Scholar
Sasaki, H. et al. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development1997, 1313–1322 (1997). Google Scholar
Infante, R.E. et al. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem.283, 1052–1063 (2008). ArticleCAS Google Scholar
Massey, J.B. & Pownall, H.J. Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Biochemistry45, 10747–10758 (2006). ArticleCAS Google Scholar
Covey, D.F. ent-Steroids: novel tools for studies of signaling pathways. Steroids74, 577–585 (2009). ArticleCAS Google Scholar
Mannock, D.A. et al. Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes. Biophys. J.84, 1038–1046 (2003). ArticleCAS Google Scholar
Westover, E.J. et al. Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J. Biol. Chem.278, 51125–51133 (2003). ArticleCAS Google Scholar
Gale, S.E. et al. Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions. J. Biol. Chem.284, 1755–1764 (2009). ArticleCAS Google Scholar
Rominger, C.M. et al. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J. Pharmacol. Exp. Ther.329, 995–1005 (2009). ArticleCAS Google Scholar
Kenakin, T.P. A Pharmacology Primer. 3rd edn. 101–147 (Elsevier, 2009).
Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell17, 388–399 (2010). ArticleCAS Google Scholar
Fitzgerald, J.B. et al. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol.2, 458–466 (2006). ArticleCAS Google Scholar
Rohatgi, R. et al. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. USA106, 3196–3201 (2009). ArticleCAS Google Scholar
Töröcsik, D., Szanto, A. & Nagy, L. Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol. Aspects Med.30, 134–152 (2009). Article Google Scholar
Brown, A.J. Cholesterol, statins and cancer. Clin. Exp. Pharmacol. Physiol.34, 135–141 (2007). ArticleCAS Google Scholar
Cooper, M.K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet.33, 508–513 (2003). ArticleCAS Google Scholar
Lin, Y.Y., Welch, M. & Lieberman, S. The detection of 20S-hydroxycholesterol in extracts of rat brains and human placenta by a gas chromatograph/mass spectrometry technique. J. Steroid Biochem. Mol. Biol.85, 57–61 (2003). ArticleCAS Google Scholar
Mijares, A. et al. Studies on the C20 epimers of 20-hydroxycholesterol. J. Org. Chem.32, 810–812 (1967). ArticleCAS Google Scholar
Ruprecht, J.J. et al. Electron crystallography reveals the structure of metarhodopsin I. EMBO J.23, 3609–3620 (2004). ArticleCAS Google Scholar
Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science318, 1258–1265 (2007). ArticleCAS Google Scholar
Roberts, K.D., Bandy, L. & Lieberman, S. The occurrence and metabolism of 20 alpha-hydroxycholesterol in bovine adrenal preparations. Biochemistry8, 1259–1270 (1969). ArticleCAS Google Scholar
Lütjohann, D. et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. USA93, 9799–9804 (1996). Article Google Scholar