Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination (original) (raw)

References

  1. Hoess, R.H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79, 3398–3402 (1982).
    CAS PubMed Google Scholar
  2. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M. & Hoess, R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb. Symp. Quant. Biol. 45, 297–309 (1981).
    CAS PubMed Google Scholar
  3. Nash, H.A. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F.C. et al.) 2363–2376 (ASM Press, Washington, D.C., 1996).
    Google Scholar
  4. Stark, W.M., Boocock, M.R. & Sherratt, D.J. Catalysis by site-specific recombinases. Trends Genet. 8, 432–439 (1992).
    CAS PubMed Google Scholar
  5. Azaro, M.A. & Landy, A. λ integrase and the λ Int family. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 118–148 (ASM Press, Washington D.C., 2002).
    Google Scholar
  6. Abremski, K. & Hoess, R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 259, 1509–1514 (1984).
    CAS PubMed Google Scholar
  7. Barre, F.X. et al. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 14, 2976–2988 (2000).
    CAS PubMed PubMed Central Google Scholar
  8. McCulloch, R., Coggins, L.W., Colloms, S.D. & Sherratt, D.J. Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J. 13, 1844–1855 (1994).
    CAS PubMed PubMed Central Google Scholar
  9. Kitts, P.A. & Nash, H.A. Bacteriophage lambda site-specific recombination proceeds with a defined order of strand exchanges. J. Mol. Biol. 204, 95–107 (1988).
    CAS PubMed Google Scholar
  10. Nunes-Düby, S., Matsumoto, L. & Landy, A. Site-specific recombination intermediates trapped with suicide substrates. Cell 50, 779–788 (1987).
    PubMed Google Scholar
  11. Arciszewska, L.K. & Sherratt, D.J. Xer site-specific recombination in vitro. EMBO J. 14, 2112–2120 (1995).
    CAS PubMed PubMed Central Google Scholar
  12. Sauer, B. Chromosome manipulation by Cre-loxP recombination. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 38–58 (ASM Press, Washington D.C., 2002).
    Google Scholar
  13. Van Duyne, G.D. A structural view of Cre-loxP site-specific recombination. Annu. Rev. Biophys. Biomol. Struct. 30, 87–104 (2001).
    CAS PubMed Google Scholar
  14. Van Duyne, G.D. A structural view of tyrosine recombinase site-specific recombination. in Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 93–117 (ASM Press, Washington DC, 2002).
    Google Scholar
  15. Hoess, R., Wierzbicki, A. & Abremski, K. Isolation and characterization of intermediates in site-specific recombination. Proc. Natl. Acad. Sci. USA 84, 6840–6844 (1987).
    CAS PubMed Google Scholar
  16. Lee, L. & Sadowski, P.D. Sequence of the loxP site determines the order of strand exchange by the Cre recombinase. J. Mol. Biol. 326, 397–412 (2003).
    CAS PubMed Google Scholar
  17. Martin, S.S., Pulido, E., Chu, V.C., Lechner, T.S. & Baldwin, E.P. The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex. J. Mol. Biol. 319, 107–127 (2002).
    CAS PubMed PubMed Central Google Scholar
  18. Ennifar, E., Meyer, J.E., Buchholz, F., Stewart, A.F. & Suck, D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res. 31, 5449–5460 (2003).
    CAS PubMed PubMed Central Google Scholar
  19. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).
    CAS PubMed Google Scholar
  20. Krogh, B.O. & Shuman, S. Catalytic mechanism of DNA topoisomerase IB. Mol. Cell 5, 1035–1041 (2000).
    CAS PubMed Google Scholar
  21. Burgin, A.B., Jr., Huizenga, B.N. & Nash, H.A. A novel suicide substrate for DNA topoisomerases and site-specific recombinases. Nucleic Acids Res. 23, 2973–2979 (1995).
    CAS PubMed PubMed Central Google Scholar
  22. Burgin, A.B. & Nash, H.A. Suicide substrates reveal properties of the homology-dependent steps during integrative recombination of bacteriophage lambda. Curr. Biol. 5, 1312–1321 (1995).
    CAS PubMed Google Scholar
  23. Burgin, A.B. Jr. & Nash, H.A. Symmetry in the mechanism of bacteriophage lambda integrative recombination. Proc. Natl. Acad. Sci. USA 89, 9642–9646 (1992).
    CAS PubMed Google Scholar
  24. Xu, Y. & Kool, E.T. A novel 5′-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Lett. 38, 5595–5598 (1997).
    CAS PubMed PubMed Central Google Scholar
  25. Miller, G.P. & Kool, E.T. A simple method for electrophilic functionalization of DNA. Org. Lett. 4, 3599–3601 (2002).
    CAS PubMed Google Scholar
  26. Ringrose, L. et al. Comparative kinetic analysis of FLP and Cre recombinases: mathematical models for DNA binding and recombination. J. Mol. Biol. 284, 363–384 (1998).
    CAS PubMed Google Scholar
  27. Abremski, K., Wierzbicki, A., Frommer, B. & Hoess, R.H. Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J. Biol. Chem. 261, 391–396 (1986).
    CAS PubMed Google Scholar
  28. Wierzbicki, A., Kendall, M., Abremski, K. & Hoess, R. A mutational analysis of the bacteriophage P1 recombinase Cre. J. Mol. Biol. 195, 785–794 (1987).
    CAS PubMed Google Scholar
  29. Cheng, C., Kussie, P., Pavletich, N. & Shuman, S. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell 92, 841–850 (1998).
    CAS PubMed Google Scholar
  30. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96, 7143–7148 (1999).
    CAS PubMed Google Scholar
  31. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).
    CAS PubMed Google Scholar
  32. Gopaul, D.N., Guo, F. & Van Duyne, G.D. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 17, 4175–4187 (1998).
    CAS PubMed PubMed Central Google Scholar
  33. Ghosh, K., Lau, C.K., Guo, F., Segall, A.M. & Van Duyne, G.D. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination. J. Biol. Chem. 280, 8290–8299 (2005).
    CAS PubMed Google Scholar
  34. Sherratt, D.J. & Wigley, D.B. Conserved themes but novel activities in recombinases and topoisomerases. Cell 93, 149–152 (1998).
    CAS PubMed Google Scholar
  35. Lee, L. & Sadowski, P.D. Directional resolution of synthetic holliday structures by the Cre recombinase. J. Biol. Chem. 276, 31092–31098 (2001).
    CAS PubMed Google Scholar
  36. Lee, L., Chu, L.C. & Sadowski, P.D. Cre induces an asymmetric DNA bend in its target loxP site. J. Biol. Chem. 278, 23118–23129 (2003).
    CAS PubMed Google Scholar
  37. Lee, L. & Sadowski, P.D. Strand selection by the tyrosine recombinases. in Progress in Nucleic Acid Research and Molecular Biology, Vol. 80 (ed. Moldave, K.) 1–42 (2005).
    Google Scholar
  38. Voziyanov, Y., Lee, J., Whang, I. & Jayaram, M. Analyses of the first chemical step in Flp site-specific recombination: synapsis may not be a pre-requisite for strand cleavage. J. Mol. Biol. 256, 720–735 (1996).
    CAS PubMed Google Scholar
  39. Ghosh, K. & Van Duyne, G.D. Cre-loxP biochemistry. Methods 28, 374–383 (2002).
    CAS PubMed Google Scholar
  40. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).
    CAS PubMed Google Scholar
  41. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).
    CAS PubMed Google Scholar
  42. Hoess, R.H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).
    CAS PubMed PubMed Central Google Scholar

Download references