Harrison, P.M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta1275, 161–203 (1996). ArticlePubMed Google Scholar
Rouault, T. & Klausner, R. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell. Regul.35, 1–19 (1997). ArticleCASPubMed Google Scholar
Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. NY Acad. Sci.1012, 1–13 (2004). ArticleCASPubMed Google Scholar
Klausner, R.D., Rouault, T.A. & Harford, J.B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell72, 19–28 (1993). ArticleCASPubMed Google Scholar
Gruer, M.J., Artymiuk, P.J. & Guest, J.R. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci.22, 3–6 (1997). ArticleCASPubMed Google Scholar
Beinert, H., Kennedy, M.C. & Stout, D.C. Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem. Rev.96, 2335–2373 (1996). ArticleCASPubMed Google Scholar
Addess, K.J., Basilion, J.P., Klausner, R.D., Rouault, T.A. & Pardi, A.J. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory proteins. J. Mol. Biol.274, 72–83 (1997). ArticleCASPubMed Google Scholar
Gdaniec, Z., Sierzputowska-Gracz, H. & Theil, E.C. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy. Biochemistry37, 1505–1512 (1998). ArticleCASPubMed Google Scholar
Dix, D.J., Lin, P.N., McKenzie, A.R., Walden, W.E. & Theil, E.C. The influence of the base-paired flanking region on structure and function of the ferritin mRNA iron regulatory element. J. Mol. Biol.231, 230–240 (1993). ArticleCASPubMed Google Scholar
Allerson, C.R., Cazzola, M. & Rouault, T.A. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J. Biol. Chem.274, 26439–26447 (1999). ArticleCASPubMed Google Scholar
Henderson, B.R., Menotti, E. & Kuhn, L.C. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J. Biol. Chem.271, 4900–4908 (1996). ArticleCASPubMed Google Scholar
Butt, J. et al. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc. Natl. Acad. Sci. USA93, 4345–4349 (1996). ArticleCASPubMedPubMed Central Google Scholar
Meehan, H.A. & Connell, G.J. The hairpin loop but not the bulged C of the iron responsive element is essential for high affinity binding to iron regulatory protein-1. J. Biol. Chem.276, 14791–14796 (2001). ArticleCASPubMed Google Scholar
Menotti, E., Henderson, B.R. & Kuhn, L.C. Translational regulation of mRNAs with distinct IRE sequences by iron regulatory proteins 1 and 2. J. Biol. Chem.273, 1821–1824 (1998). ArticleCASPubMed Google Scholar
Ke, Y., Wu, J., Leibold, E.A., Walden, W.E. & Theil, E.C. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation. J. Biol. Chem.273, 23637–23640 (1998). ArticleCASPubMed Google Scholar
Theil, E.C. & Eisenstein, R.S. Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (iso-IREs). J. Biol. Chem.275, 40659–40662 (2000). ArticleCASPubMed Google Scholar
Ismail, A.R., Lachlan, K.L., Mumford, A.D., Temple, I.K. & Hodgkins, P.R. Hereditary hyperferritinemia cataract syndrome: ocular, genetic, and biochemical findings. Eur. J. Ophthalmol.16, 153–160 (2006). ArticleCASPubMed Google Scholar
Hentze, M.W. et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science238, 1570–1573 (1987). ArticleCASPubMed Google Scholar
Leibold, E.A. & Munro, H.N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc. Natl. Acad. Sci. USA85, 2171–2175 (1988). ArticleCASPubMedPubMed Central Google Scholar
Melefors, O. et al. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J. Biol. Chem.268, 5974–5978 (1993). PubMed Google Scholar
Cooperman, S.S. et al. Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood106, 1084–1091 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.Y., LaVaute, T., Iwai, K., Klausner, R.D. & Rouault, T.A. Identification of a conserved and functional iron-responsive element in the 5′UTR of mammalian mitochondrial aconitase. J. Biol. Chem.271, 24226–24230 (1996). ArticleCASPubMed Google Scholar
Gray, N.K., Pantopoulos, K., Dandekar, T., Ackrell, B.A. & Hentze, M.W. Translational regulation of mammalian and Drosophila citric-acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. USA93, 4925–4930 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schalinske, K.L., Chen, O.S. & Eisenstein, R.S. Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. Implications for iron regulatory proteins as regulators of mitochondrial citrate utilization. J. Biol. Chem.273, 3740–3746 (1998). ArticleCASPubMed Google Scholar
Kohler, S.A., Henderson, B.R. & Kuhn, L.C. Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5′-untranslated region. J. Biol. Chem.270, 30781–30786 (1995). ArticleCASPubMed Google Scholar
Abboud, S. & Haile, D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem.275, 19906–19912 (2000). ArticleCASPubMed Google Scholar
Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature388, 482–488 (1997). ArticleCASPubMed Google Scholar
Kohler, S.A., Menotti, E. & Kuhn, L.C. Molecular cloning of mouse glycolate oxidase. High evolutionary conservation and presence of an iron-responsive element-like sequence in the mRNA. J. Biol. Chem.274, 2401–2407 (1999). ArticleCASPubMed Google Scholar
Gunshin, H. et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett.509, 309–316 (2001). ArticleCASPubMed Google Scholar
Recalcati, S., Tacchini, L., Alberghini, A., Conte, D. & Cairo, G. Oxidative stress-mediated down-regulation of rat hydroxyacid oxidase 1, a liver-specific peroxisomal enzyme. Hepatology38, 1159–1166 (2003). ArticleCASPubMed Google Scholar
Beaumont, C. et al. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat. Genet.11, 444–446 (1995). ArticleCASPubMed Google Scholar
Cazzola, M. & Skoda, R.C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood95, 3280–3288 (2000). CASPubMed Google Scholar
Rouault, T.A. et al. Cloning of the cDNA encoding an RNA regulatory protein–the human iron-responsive element-binding protein. Proc. Natl. Acad. Sci. USA87, 7958–7962 (1990). ArticleCASPubMedPubMed Central Google Scholar
Patino, M.M. & Walden, W.E. Cloning of a functional cDNA for the rabbit ferritin mRNA repressor protein: demonstration of a tissue specific pattern of expression. J. Biol. Chem.267, 19011–19016 (1992). CASPubMed Google Scholar
Yu, Y., Radisky, E. & Leibold, E.A. The iron-responsive element binding protein: purification, cloning and regulation in rat liver. J. Biol. Chem.267, 19005–19010 (1992). CASPubMed Google Scholar
Hirling, H. et al. Expression of active iron regulatory factor from a full-length human cDNA by in vitro transcription/translation. Nucleic Acids Res.20, 33–39 (1992). ArticleCASPubMedPubMed Central Google Scholar
Guo, B., Yu, Y. & Leibold, E.A. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem.269, 24252–24260 (1994). CASPubMed Google Scholar
Samaniego, F., Chin, J., Iwai, K., Rouault, T.A. & Klausner, R.D. Molecular characterization of a second iron responsive element binding protein, iron regulatory protein 2 (IRP2): structure, function and post-translational regulation. J. Biol. Chem.269, 30904–30910 (1994). CASPubMed Google Scholar
Kaptain, S. et al. A regulated RNA binding protein also possesses aconitase activity. Proc. Natl. Acad. Sci. USA88, 10109–10113 (1991). ArticleCASPubMedPubMed Central Google Scholar
Kennedy, M.C., Mende-Mueller, L., Blondin, G.A. & Beinert, H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein (IRE-BP). Proc. Natl. Acad. Sci. USA89, 11730–11734 (1992). ArticleCASPubMedPubMed Central Google Scholar
Zheng, L., Andrews, P.C., Hermodson, M.A., Dixon, J.E. & Zalkin, H. Cloning and structural characterization of porcine heart aconitase. J. Biol. Chem.265, 2814–2821 (1990). CASPubMed Google Scholar
Dupuy, J. et al. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure14, 129–139 (2006). ArticleCASPubMed Google Scholar
Hirling, H., Henderson, B.R. & Kuhn, L.C. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J.13, 453–461 (1994). ArticleCASPubMedPubMed Central Google Scholar
Philpott, C.C., Klausner, R.D. & Rouault, T.A. The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc. Natl. Acad. Sci. USA91, 7321–7325 (1994). ArticleCASPubMedPubMed Central Google Scholar
DeRusso, P.A. et al. Expression of a constitutive mutant of iron regulatory protein 1 abolishes iron homeostasis in mammalian cells. J. Biol. Chem.270, 15451–15454 (1995). ArticleCASPubMed Google Scholar
Wang, J. & Pantopoulos, K. Conditional derepression of ferritin synthesis in cells expressing a constitutive IRP1 mutant. Mol. Cell. Biol.22, 4638–4651 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rouault, T.A. & Klausner, R.D. Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem. Sci.21, 174–177 (1996). ArticleCASPubMed Google Scholar
Cairo, G., Recalcati, S., Pietrangelo, A. & Minotti, G. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic. Biol. Med.32, 1237–1243 (2002). ArticleCASPubMed Google Scholar
Bouton, C. & Drapier, J.C. Iron regulatory proteins as NO signal transducers. Sci. STKE2003, pe17 (2003). PubMed Google Scholar
Caltagirone, A., Weiss, G. & Pantopoulos, K. Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J. Biol. Chem.276, 19738–19745 (2001). ArticleCASPubMed Google Scholar
Haile, D.J. et al. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high affinity RNA binding. Proc. Natl. Acad. Sci. USA89, 11735–11739 (1992). ArticleCASPubMedPubMed Central Google Scholar
Basilion, J.P., Rouault, T.A., Massinople, C.M., Klausner, R.D. & Burgess, W.H. The iron-responsive element-binding protein: localization of the RNA binding site to the aconitase active-site cleft. Proc. Natl. Acad. Sci. USA91, 574–578 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kaldy, P., Menotti, E., Moret, R. & Kuhn, L.C. Identification of RNA-binding surfaces in iron regulatory protein-1. EMBO J.18, 6073–6083 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gegout, V. et al. Ligand-induced structural alterations in human iron regulatory protein-1 revealed by protein footprinting. J. Biol. Chem.274, 15052–15058 (1999). ArticleCASPubMed Google Scholar
Selezneva, A.I., Cavigiolio, G., Theil, E.C., Walden, W.E. & Volz, K. Crystallization and preliminary X-ray diffraction analysis of iron regulatory protein 1 in complex with ferritin IRE RNA. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun.62, 249–252 (2006). ArticleCAS Google Scholar
Eisenstein, R.S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr.20, 627–662 (2000). ArticleCASPubMed Google Scholar
Johnson, D.C., Dean, D.R., Smith, A.D. & Johnson, M.K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem.74, 247–281 (2005). ArticleCASPubMed Google Scholar
Lill, R. & Muhlenhoff, U. Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci.30, 133–141 (2005). ArticleCASPubMed Google Scholar
Rouault, T.A. & Tong, W.H. Opinion: iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol.6, 345–351 (2005). ArticleCASPubMed Google Scholar
Tong, W.H. & Rouault, T.A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab.3, 199–210 (2006). ArticleCASPubMed Google Scholar
Li, K., Tong, W.H., Hughes, R.M. & Rouault, T.A. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem.281, 12344–12351 (2006). ArticleCASPubMed Google Scholar
Land, T. & Rouault, T.A. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell2, 807–815 (1998). ArticleCASPubMed Google Scholar
Tong, W.H. & Rouault, T. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J.19, 5692–5700 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tong, W.H., Jameson, G.N., Huynh, B.H. & Rouault, T.A. Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc. Natl. Acad. Sci. USA100, 9762–9767 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez-Manzaneque, M.T., Tamarit, J., Belli, G., Ros, J. & Herrero, E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell13, 1109–1121 (2002). ArticleCASPubMedPubMed Central Google Scholar
Molina-Navarro, M.M., Casas, C., Piedrafita, L., Belli, G. & Herrero, E. Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett.580, 2273–2280 (2006). ArticleCASPubMed Google Scholar
Wingert, R.A. et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature436, 1035–1039 (2005). ArticleCASPubMed Google Scholar
Cairo, G., Ronchi, R., Recalcati, S., Campanella, A. & Minotti, G. Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of. Biochemistry41, 7435–7442 (2002). ArticleCASPubMed Google Scholar
Mueller, S., Pantopoulos, K., Hubner, C.A., Stremmel, W. & Hentze, M.W. IRP1 activation by extracellular oxidative stress in the perfused rat liver. J. Biol. Chem.276, 23192–23196 (2001). ArticleCASPubMed Google Scholar
Recalcati, S. et al. Iron regulatory proteins 1 and 2 in human monocytes, macrophages and duodenum: expression and regulation in hereditary hemochromatosis and iron deficiency. Haematologica91, 303–310 (2006). CASPubMed Google Scholar
Missirlis, F. et al. Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J. Biol. Chem.278, 47365–47369 (2003). ArticleCASPubMed Google Scholar
Clarke, S.L. et al. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster. EMBO J.25, 544–553 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wallace, M.A. et al. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J. Biol. Chem.279, 32055–32062 (2004). ArticleCASPubMed Google Scholar
Brown, N.M., Kennedy, M.C., Antholine, W.E., Eisenstein, R.S. & Walden, W.E. Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe-S cluster cycling. J. Biol. Chem.277, 7246–7254 (2002). ArticleCASPubMed Google Scholar
Gonzalez, D., Drapier, J.C. & Bouton, C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J. Biol. Chem.279, 43345–43351 (2004). ArticleCASPubMed Google Scholar
Pitula, J.S. et al. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711. Proc. Natl. Acad. Sci. USA101, 10907–10912 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fillebeen, C., Caltagirone, A., Martelli, A., Moulis, J.M. & Pantopoulos, K. IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem. J.388, 143–150 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chen, O.S., Schalinske, K.L. & Eisenstein, R.S. Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr.127, 238–248 (1997). ArticleCASPubMed Google Scholar
LaVaute, T. et al. Targeted deletion of iron regulatory protein 2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet.27, 209–214 (2001). ArticleCASPubMed Google Scholar
Galy, B. et al. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood106, 2580–2589 (2005). ArticleCASPubMed Google Scholar
Meyron-Holtz, E.G. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J.23, 386–395 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyron-Holtz, E.G., Ghosh, M.C. & Rouault, T.A. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science306, 2087–2090 (2004). ArticleCASPubMed Google Scholar
Koh, H.J. et al. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J. Biol. Chem.279, 39968–39974 (2004). ArticleCASPubMed Google Scholar
Lawlis, V.B. & Roche, T.E. Effect of micromolar Ca2+ on NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification. Mol. Cell. Biochem.32, 147–152 (1980). ArticleCASPubMed Google Scholar
Palmieri, F. et al. Mitochondrial metabolite transporters. Biochim. Biophys. Acta1275, 127–132 (1996). ArticlePubMed Google Scholar
Smith, S.R. et al. Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann. NY Acad. Sci.1012, 65–83 (2004). ArticleCASPubMed Google Scholar
Zhang, P. et al. Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J. Struct. Biol.150, 144–153 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.Y., Klausner, R.D. & Rouault, T.A. Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element binding proteins, IRP1 and IRP2. J. Biol. Chem.270, 4983–4986 (1995). ArticleCASPubMed Google Scholar
Wu, K.J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science283, 676–679 (1999). ArticleCASPubMed Google Scholar
Iwai, K. et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA95, 4924–4928 (1998). ArticleCASPubMedPubMed Central Google Scholar
Iwai, K., Klausner, R.D. & Rouault, T.A. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J.14, 5350–5357 (1995). ArticleCASPubMedPubMed Central Google Scholar
Guo, B., Phillips, J.D., Yu, Y. & Leibold, E.A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem.270, 21645–21651 (1995). ArticleCASPubMed Google Scholar
Wang, J. et al. Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol.24, 954–965 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bourdon, E. et al. The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2. Blood Cells Mol. Dis.31, 247–255 (2003). ArticleCASPubMed Google Scholar
Yamanaka, K. et al. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat. Cell Biol.5, 336–340 (2003). ArticleCASPubMed Google Scholar
Jeong, J., Rouault, T.A. & Levine, R.L. Identification of a heme-sensing domain in iron regulatory protein 2. J. Biol. Chem.279, 45450–45454 (2004). ArticleCASPubMed Google Scholar
Ishikawa, H. et al. Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2. Mol. Cell19, 171–181 (2005). ArticleCASPubMed Google Scholar
Hanson, E.S., Rawlins, M.L. & Leibold, E.A. Oxygen and iron regulation of iron regulatory protein 2. J. Biol. Chem.278, 40337–40342 (2003). ArticleCASPubMed Google Scholar
Schalinske, K.L. & Eisenstein, R.S. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL60 cells. J. Biol. Chem.271, 7168–7176 (1996). ArticleCASPubMed Google Scholar
Smith, S.R., Ghosh, M.C., Ollivierre-Wilson, H., Hang Tong, W. & Rouault, T.A. Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol. Dis.36, 283–287 (2006). ArticleCASPubMed Google Scholar