Probing cell-division phenotype space and Polo-like kinase function using small molecules (original) (raw)

References

  1. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).
    Article CAS Google Scholar
  2. Mitchison, T.J. & Salmon, E.D. Mitosis: a history of division. Nat. Cell Biol. 3, E17–E21 (2001).
    Article CAS Google Scholar
  3. Inoue, S. & Salmon, E.D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).
    Article CAS Google Scholar
  4. Lampson, M.A. & Kapoor, T.M. Unraveling cell division mechanisms with small-molecule inhibitors. Nat. Chem. Biol. 2, 19–27 (2006).
    Article CAS Google Scholar
  5. Jordan, M.A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).
    Article CAS Google Scholar
  6. Bettencourt-Dias, M. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987 (2004).
    Article CAS Google Scholar
  7. Kittler, R. & Buchholz, F. Functional genomic analysis of cell division by endoribonuclease-prepared siRNAs. Cell Cycle 4, 564–567 (2005).
    Article CAS Google Scholar
  8. Fitzgerald, K. RNAi versus small molecules: different mechanisms and specificities can lead to different outcomes. Curr. Opin. Drug Discov. Devel. 8, 557–566 (2005).
    CAS PubMed Google Scholar
  9. Specht, K.M. & Shokat, K.M. The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14, 155–159 (2002).
    Article CAS Google Scholar
  10. Tan, D.S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1, 74–84 (2005).
    Article CAS Google Scholar
  11. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).
    Article CAS Google Scholar
  12. Evans, B.E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988).
    Article CAS Google Scholar
  13. De Corte, B.L. From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepin-2(1H)-one (TIBO) to etravirine (TMC125): fifteen years of research on non-nucleoside Inhibitors of HIV-1 reverse transcriptase. J. Med. Chem. 48, 1689–1696 (2005).
    Article CAS Google Scholar
  14. Sorbera, L.A., Castaner, J. & Martin, L. Revaprazan hydrochloride: treatment of GERD, H+/K+-ATPase inhibitor, antiulcer drug. Drugs Future 29, 455–459 (2004).
    Article CAS Google Scholar
  15. Breault, G.A. et al. Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 2: identification and optimisation of substituted 2,4-bis anilino pyrimidines. Bioorg. Med. Chem. Lett. 13, 2961–2966 (2003).
    Article CAS Google Scholar
  16. Legendre, P. & Legendre, L. Numerical ecology (Elsevier, New York, 1998).
    Google Scholar
  17. Hotha, S. et al. HR22C16: a potent small-molecule probe for the dynamics of cell division. Angew. Chem. Int. Edn. Engl. 42, 2379–2382 (2003).
    Article CAS Google Scholar
  18. Aronov, A.M. & Murcko, M.A. Toward a pharmacophore for kinase frequent hitters. J. Med. Chem. 47, 5616–5619 (2004).
    Article CAS Google Scholar
  19. Feng, B.Y., Shelat, A., Doman, T.N., Guy, R.K. & Shoichet, B.K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol. 1, 146–148 (2005).
    Article CAS Google Scholar
  20. Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).
    Article CAS Google Scholar
  21. Davis-Ward, R., Mook, R.A., Jr., Neeb, M.J. & Salovich, J.M. Preparation of pyrimidine derivatives as Polo-like kinases inhibitors for treatment of cancers (World Patent WO 2004074244, 2004).
  22. Barr, F.A., Sillje, H.H. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).
    Article CAS Google Scholar
  23. Takai, N., Hamanaka, R., Yoshimatsu, J. & Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 (2005).
    Article CAS Google Scholar
  24. Compton, D.A. Spindle assembly in animal cells. Annu. Rev. Biochem. 69, 95–114 (2000).
    Article CAS Google Scholar
  25. Sharp, D.J., Rogers, G.C. & Scholey, J.M. Microtubule motors in mitosis. Nature 407, 41–47 (2000).
    Article CAS Google Scholar
  26. McInnes, C., Mezna, M. & Fischer, P.M. Progress in the discovery of polo-like kinase inhibitors. Curr. Top. Med. Chem. 5, 181–197 (2005).
    Article CAS Google Scholar
  27. Gumireddy, K. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–286 (2005).
    Article CAS Google Scholar
  28. McInnes, C., Meades, C., Mezna, M. & Fischer, P. Benzthiazole-3 oxides useful for the treatment of proliferative disorders (World Patent WO 2004067000, 2004).
  29. van Vugt, M.A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841–36854 (2004).
    Article CAS Google Scholar
  30. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).
    Article CAS Google Scholar
  31. Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A. & Kapoor, T.M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).
    Article CAS Google Scholar
  32. Toyoshima-Morimoto, F., Taniguchi, E. & Nishida, E. Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341–348 (2002).
    Article CAS Google Scholar
  33. Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).
    Article CAS Google Scholar
  34. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).
    Article CAS Google Scholar
  35. Niiya, F., Xie, X., Lee, K.S., Inoue, H. & Miki, T. Inhibition of cyclin-dependent kinase 1 induces cytokinesis without chromosome segregation in an ECT2 and MgcRacGAP-dependent manner. J. Biol. Chem. 280, 36502–36509 (2005).
    Article CAS Google Scholar
  36. Lampson, M.A., Renduchitala, K., Khodjakov, A. & Kapoor, T.M. Correcting improper chromosome-spindle attachments during cell division. Nat. Cell Biol. 6, 232–237 (2004).
    Article CAS Google Scholar
  37. Dogterom, M., Kerssemakers, J.W., Romet-Lemonne, G. & Janson, M.E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 17, 67–74 (2005).
    Article CAS Google Scholar
  38. Li, X. & Nicklas, R.B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).
    Article CAS Google Scholar
  39. Waters, J.C., Mitchison, T.J., Rieder, C.L. & Salmon, E.D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996).
    Article CAS Google Scholar
  40. Gergely, F., Draviam, V.M. & Raff, J.W. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev. 17, 336–341 (2003).
    Article CAS Google Scholar
  41. Joseph, J., Liu, S.T., Jablonski, S.A., Yen, T.J. & Dasso, M. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr. Biol. 14, 611–617 (2004).
    Article CAS Google Scholar
  42. Garrett, S., Auer, K., Compton, D.A. & Kapoor, T.M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol. 12, 2055–2059 (2002).
    Article CAS Google Scholar
  43. Gruber, J., Harborth, J., Schnabel, J., Weber, K. & Hatzfeld, M. The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J. Cell Sci. 115, 4053–4059 (2002).
    Article CAS Google Scholar
  44. Adams, R.R., Maiato, H., Earnshaw, W.C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 153, 865–880 (2001).
    Article CAS Google Scholar
  45. Holt, S.V. et al. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J. Cell Sci. 118, 4889–4900 (2005).
    Article CAS Google Scholar
  46. Zhu, C. et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell 16, 3187–3199 (2005).
    Article CAS Google Scholar
  47. Dai, J., Sultan, S., Taylor, S.S. & Higgins, J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).
    Article CAS Google Scholar
  48. McEwen, B.F., Heagle, A.B., Cassels, G.O., Buttle, K.F. & Rieder, C.L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).
    Article CAS Google Scholar
  49. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).
    Article CAS Google Scholar
  50. Tanaka, M. et al. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol. 3, e128 (2005).
    Article Google Scholar
  51. Qian, Y.W., Erikson, E., Li, C. & Maller, J.L. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18, 4262–4271 (1998).
    Article CAS Google Scholar

Download references