Sensitivities of extant animal taxa to ocean acidification (original) (raw)

References

  1. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).
    Article CAS Google Scholar
  2. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).
    Article CAS Google Scholar
  3. Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).
    Article Google Scholar
  4. IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).
  5. Nicholls, R. J. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) Ch. 6 (Cambridge Univ. Press, 2007).
    Google Scholar
  6. Pörtner, H. O. Climate-dependent evolution of Antarctic ectotherms: An integrative analysis. Deep-Sea Res. II 53, 1071–1104 (2006).
    Article Google Scholar
  7. Pörtner, H. O. Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
    Article Google Scholar
  8. Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).
    Article Google Scholar
  9. Pörtner, H. O., Langenbuch, M. & Michaelidis, B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, C09S10 (2005).
    Article Google Scholar
  10. Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).
    Article CAS Google Scholar
  11. Widdicombe, S. & Spicer, J. Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J. Exp. Mar. Biol. Ecol. 366, 187–197 (2008).
    Article Google Scholar
  12. Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).
    Article Google Scholar
  13. Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. http://dx.doi.org/10.1016/j.marpolbul.2012.11.040 (2013).
  14. Seibel, B. A. & Walsh, P. J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol. 206, 641–650 (2003).
    Article CAS Google Scholar
  15. Sinning, A. & Hübner, C. A. Minireview: pH and synaptic transmission. FEBS Lett. 587, 1923–1928 (2013).
    Article CAS Google Scholar
  16. Reipschläger, A., Nilsson, G. E. & Pörtner, H. O. A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. Am. J. Physiol. 272, R350–R356 (1997).
    Article Google Scholar
  17. Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2, 201–204 (2012).
    Article CAS Google Scholar
  18. Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).
    Article CAS Google Scholar
  19. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 9, 1884–1896 (2013).
    Article Google Scholar
  20. Dupont, S., Dorey, N. & Throndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar. Coast. Shelf Sci. 89, 182–185 (2010).
    Article Google Scholar
  21. Dupont, S., Ortega-Martı´nez, O. & Thorndyke, M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19, 449–462 (2010).
    Article CAS Google Scholar
  22. Caldeira, K. et al. in IPCC Carbon Dioxide Capture and Storage (eds Metz, B. et al.) Ch. 6 (Cambridge Univ. Press, 2005).
    Google Scholar
  23. Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).
    Article CAS Google Scholar
  24. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
    Article Google Scholar
  25. Knoll, A., Bambach, R., Payne, J., Pruss, S. & Fischer, W. Paleophysiology and end-Permian mass extinction. Earth Planet Sci. Lett. 256, 295–313 (2007).
    Article CAS Google Scholar
  26. Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).
    Article Google Scholar
  27. Zamagni, J., Mutti, M. & Košir, A. The evolution of mid Paleocene-early Eocene coral communities: How to survive during rapid global warming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317-318, 48–65 (2012).
    Article Google Scholar
  28. Kump, L. R., Bralower, T. J. & Ridgwell, A. Ocean acidification in deep time. Oceanography 22, 94–107 (2009).
    Article Google Scholar
  29. Venn, A. A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl Acad. Sci. USA 110, 1634–1639 (2013).
    Article CAS Google Scholar
  30. McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Clim. Change 2, 623–627 (2012).
    Article CAS Google Scholar
  31. Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89–96 (2007).
    Article CAS Google Scholar
  32. Thomsen, J. et al. Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7, 3879–3891 (2010).
    Article CAS Google Scholar
  33. Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).
    Article CAS Google Scholar
  34. Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).
    Article CAS Google Scholar
  35. Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Pl. Sci. 39, 241–269 (2011).
    Article CAS Google Scholar
  36. Chen, Z-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci. 5, 375–383 (2012).
    Article CAS Google Scholar
  37. Little, C. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals 304 (Cambridge Univ. Press, 1990).
    Google Scholar
  38. Hale, R., Calosi, P., McNeill, L., Mieszkowska, N. & Widdicombe, S. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120, 661–674 (2011).
    Article Google Scholar
  39. Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).
    Article CAS Google Scholar
  40. Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
    Article CAS Google Scholar
  41. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change 1, 165–169 (2011).
    Article CAS Google Scholar
  42. Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).
    Article Google Scholar
  43. Miller, G. M., Watson, S-A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim. Change 2, 858–861 (2012).
    Article CAS Google Scholar
  44. Boyd, P. W. Beyond ocean acidification. Nature Geosci. 4, 273–274 (2011).
    Article CAS Google Scholar
  45. Pörtner, H. O. & Farrell, A. P. Ecology. Physiology and climate change. Science 322, 690–692 (2008).
    Article Google Scholar
  46. Speijer, R. P., Scheibner, C., Stassen, P. & Morsi, A-M. M. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene–Eocene Thermal Maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).
    Google Scholar
  47. Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).
    Article CAS Google Scholar
  48. Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).
    Article Google Scholar
  49. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).
    Article CAS Google Scholar

Download references