Sensitivities of extant animal taxa to ocean acidification (original) (raw)
References
Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature463, 747–756 (2010). ArticleCAS Google Scholar
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change109, 213–241 (2011). ArticleCAS Google Scholar
Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography22, 36–47 (2009). Article Google Scholar
IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).
Nicholls, R. J. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) Ch. 6 (Cambridge Univ. Press, 2007). Google Scholar
Pörtner, H. O. Climate-dependent evolution of Antarctic ectotherms: An integrative analysis. Deep-Sea Res. II53, 1071–1104 (2006). Article Google Scholar
Pörtner, H. O. Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol.213, 881–893 (2010). Article Google Scholar
Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser.470, 273–290 (2012). Article Google Scholar
Pörtner, H. O., Langenbuch, M. & Michaelidis, B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res.110, C09S10 (2005). Article Google Scholar
Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences6, 2313–2331 (2009). ArticleCAS Google Scholar
Widdicombe, S. & Spicer, J. Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J. Exp. Mar. Biol. Ecol.366, 187–197 (2008). Article Google Scholar
Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser.373, 203–217 (2008). Article Google Scholar
Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull.http://dx.doi.org/10.1016/j.marpolbul.2012.11.040 (2013).
Seibel, B. A. & Walsh, P. J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol.206, 641–650 (2003). ArticleCAS Google Scholar
Sinning, A. & Hübner, C. A. Minireview: pH and synaptic transmission. FEBS Lett.587, 1923–1928 (2013). ArticleCAS Google Scholar
Reipschläger, A., Nilsson, G. E. & Pörtner, H. O. A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. Am. J. Physiol.272, R350–R356 (1997). Article Google Scholar
Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change2, 201–204 (2012). ArticleCAS Google Scholar
Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuar. Coast. Shelf Sci.86, 157–164 (2010). ArticleCAS Google Scholar
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol.9, 1884–1896 (2013). Article Google Scholar
Dupont, S., Dorey, N. & Throndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar. Coast. Shelf Sci.89, 182–185 (2010). Article Google Scholar
Dupont, S., Ortega-Martı´nez, O. & Thorndyke, M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology19, 449–462 (2010). ArticleCAS Google Scholar
Caldeira, K. et al. in IPCC Carbon Dioxide Capture and Storage (eds Metz, B. et al.) Ch. 6 (Cambridge Univ. Press, 2005). Google Scholar
Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci.3, 196–200 (2010). ArticleCAS Google Scholar
Hönisch, B. et al. The geological record of ocean acidification. Science335, 1058–1063 (2012). Article Google Scholar
Knoll, A., Bambach, R., Payne, J., Pruss, S. & Fischer, W. Paleophysiology and end-Permian mass extinction. Earth Planet Sci. Lett.256, 295–313 (2007). ArticleCAS Google Scholar
Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol.17, 56–67 (2011). Article Google Scholar
Zamagni, J., Mutti, M. & Košir, A. The evolution of mid Paleocene-early Eocene coral communities: How to survive during rapid global warming. Palaeogeogr. Palaeoclimatol. Palaeoecol.317-318, 48–65 (2012). Article Google Scholar
Kump, L. R., Bralower, T. J. & Ridgwell, A. Ocean acidification in deep time. Oceanography22, 94–107 (2009). Article Google Scholar
Venn, A. A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl Acad. Sci. USA110, 1634–1639 (2013). ArticleCAS Google Scholar
McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Clim. Change2, 623–627 (2012). ArticleCAS Google Scholar
Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull.54, 89–96 (2007). ArticleCAS Google Scholar
Thomsen, J. et al. Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences7, 3879–3891 (2010). ArticleCAS Google Scholar
Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser.430, 257–271 (2011). ArticleCAS Google Scholar
Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser.373, 295–302 (2008). ArticleCAS Google Scholar
Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Pl. Sci.39, 241–269 (2011). ArticleCAS Google Scholar
Chen, Z-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci.5, 375–383 (2012). ArticleCAS Google Scholar
Little, C. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals 304 (Cambridge Univ. Press, 1990). Google Scholar
Hale, R., Calosi, P., McNeill, L., Mieszkowska, N. & Widdicombe, S. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos120, 661–674 (2011). Article Google Scholar
Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA108, 14515–14520 (2011). ArticleCAS Google Scholar
Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature454, 96–99 (2008). ArticleCAS Google Scholar
Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change1, 165–169 (2011). ArticleCAS Google Scholar
Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol.18, 82–92 (2012). Article Google Scholar
Miller, G. M., Watson, S-A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim. Change2, 858–861 (2012). ArticleCAS Google Scholar
Pörtner, H. O. & Farrell, A. P. Ecology. Physiology and climate change. Science322, 690–692 (2008). Article Google Scholar
Speijer, R. P., Scheibner, C., Stassen, P. & Morsi, A-M. M. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene–Eocene Thermal Maximum (PETM). Austrian J. Earth Sci.105, 6–16 (2012). Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science273, 452–457 (1996). ArticleCAS Google Scholar
Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr.60, 705–718 (2004). Article Google Scholar
Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci.40, 89–111 (2012). ArticleCAS Google Scholar