Evolutionary paths to antibiotic resistance under dynamically sustained drug selection (original) (raw)

References

  1. Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).
    Article CAS PubMed Google Scholar
  2. Bryson, V. & Szybalski, W. Microbial selection. Science 116, 45–51 (1952).
    Article PubMed Google Scholar
  3. Lee, H.H., Molla, M.N., Cantor, C.R. & Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  4. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).
    Article CAS PubMed Google Scholar
  5. Lane, P.G., Hutter, A., Oliver, S.G. & Butler, P.R. Selection of microbial mutants tolerant to extreme environmental stress using continuous culture-control design. Biotechnol. Prog. 15, 1115–1124 (1999).
    Article CAS PubMed Google Scholar
  6. Lozovsky, E.R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl. Acad. Sci. USA 106, 12025–12030 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  7. Matthews, D.A. et al. Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science 197, 452–455 (1977).
    Article CAS PubMed Google Scholar
  8. Schnell, J.R., Dyson, H.J. & Wright, P.E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct. 33, 119–140 (2004).
    Article CAS PubMed Google Scholar
  9. Couñago, R., Chen, S. & Shamoo, Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol. Cell 22, 441–449 (2006).
    Article PubMed Google Scholar
  10. Taubes, G. The bacteria fight back. Science 321, 356–361 (2008).
    Article CAS PubMed Google Scholar
  11. Lipsitch, M., Bergstrom, C.T. & Levin, B.R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl. Acad. Sci. USA 97, 1938–1943 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  12. Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).
    Article CAS PubMed Google Scholar
  13. Martinez, J.L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev. 33, 44–65 (2009).
    Article CAS PubMed Google Scholar
  14. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  15. Yee, Y.C., Kisslinger, B., Yu, V.L. & Jin, D.J. A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 38, 133–137 (1996).
    Article CAS PubMed Google Scholar
  16. Ruiz, J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51, 1109–1117 (2003).
    Article CAS PubMed Google Scholar
  17. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  18. Huovinen, P. Trimethoprim resistance. Antimicrob. Agents Chemother. 31, 1451–1456 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  19. Girgis, H.S., Hottes, A.K. & Tavazoie, S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE 4, e5629 (2009).
    Article PubMed PubMed Central Google Scholar
  20. Albert, T.J. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods 2, 951–953 (2005).
    Article CAS PubMed Google Scholar
  21. Friedman, L., Alder, J.D. & Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 2137–2145 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  22. Barrick, J.E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).
    Article CAS PubMed Google Scholar
  23. Yeh, P.J., Hegreness, M.J., Aiden, A.P. & Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  24. Michel, J.B., Yeh, P.J., Chait, R., Moellering, R.C. Jr. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA 105, 14918–14923 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  25. Demerec, M. Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc. Natl. Acad. Sci. USA 31, 16–24 (1945).
    Article CAS PubMed PubMed Central Google Scholar
  26. Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 52, 11–17 (2003).
    Article CAS PubMed Google Scholar
  27. Bull, A.T. The renaissance of continuous culture in the post-genomics age. J. Ind. Microbiol. Biotechnol. 37, 993–1021 (2010).
    Article CAS PubMed Google Scholar
  28. de Crécy, E. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 77, 489–496 (2007).
    Article PubMed Google Scholar
  29. Paalme, T., Elken, R., Kahru, A., Vanatalu, K. & Vilu, R. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie van Leeuwenhoek 71, 217–230 (1997).
    Article CAS PubMed Google Scholar
  30. Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).
    Article CAS PubMed Google Scholar
  31. Arjan, J.A. et al. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).
    Article CAS PubMed Google Scholar
  32. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  33. Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M. & Aono, R. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl. Environ. Microbiol. 63, 1428–1433 (1997).
    CAS PubMed PubMed Central Google Scholar
  34. Mankin, A.S., Zyrianova, I.M., Kagramanova, V.K. & Garrett, R.A. Introducing mutations into the single-copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc. Natl. Acad. Sci. USA 89, 6535–6539 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  35. Gerrits, M.M., Berning, M., Van Vliet, A.H., Kuipers, E.J. & Kusters, J.G. Effects of 16S rRNA gene mutations on tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47, 2984–2986 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  36. Ross, J.I., Eady, E.A., Cove, J.H. & Cunliffe, W.J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42, 1702–1705 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  37. Ettayebi, M., Prasad, S.M. & Morgan, E.A. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J. Bacteriol. 162, 551–557 (1985).
    CAS PubMed PubMed Central Google Scholar
  38. Flensburg, J. & Skold, O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur. J. Biochem. 162, 473–476 (1987).
    Article CAS PubMed Google Scholar
  39. Ohmae, E., Sasaki, Y. & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem. 130, 439–447 (2001).
    Article CAS PubMed Google Scholar
  40. Smith, D.R. & Calvo, J.M. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product. Mol. Gen. Genet. 187, 72–78 (1982).
    Article CAS PubMed Google Scholar
  41. Watson, M., Liu, J.W. & Ollis, D. Directed evolution of trimethoprim resistance in Escherichia coli. FEBS J. 274, 2661–2671 (2007).
    Article CAS PubMed Google Scholar
  42. Lunzer, M., Miller, S.P., Felsheim, R. & Dean, A.M. The biochemical architecture of an ancient adaptive landscape. Science 310, 499–501 (2005).
    Article CAS PubMed Google Scholar
  43. de Visser, J.A. & Rozen, D.E. Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 172, 2093–2100 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  44. Wichman, H.A., Badgett, M.R., Scott, L.A., Boulianne, C.M. & Bull, J.J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999).
    Article CAS PubMed Google Scholar
  45. Crandall, K.A., Kelsey, C.R., Imamichi, H., Lane, H.C. & Salzman, N.P. Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol. Biol. Evol. 16, 372–382 (1999).
    Article CAS PubMed Google Scholar
  46. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    Article PubMed PubMed Central Google Scholar
  47. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 8, R232 (2007).
    Article PubMed PubMed Central Google Scholar
  48. Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 139, 707–718 (2009).
    Article CAS PubMed PubMed Central Google Scholar

Download references