Evolutionary paths to antibiotic resistance under dynamically sustained drug selection (original) (raw)
References
Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science312, 111–114 (2006). ArticleCASPubMed Google Scholar
Lee, H.H., Molla, M.N., Cantor, C.R. & Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature467, 82–85 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science333, 1764–1767 (2011). ArticleCASPubMed Google Scholar
Lane, P.G., Hutter, A., Oliver, S.G. & Butler, P.R. Selection of microbial mutants tolerant to extreme environmental stress using continuous culture-control design. Biotechnol. Prog.15, 1115–1124 (1999). ArticleCASPubMed Google Scholar
Lozovsky, E.R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl. Acad. Sci. USA106, 12025–12030 (2009). ArticleCASPubMedPubMed Central Google Scholar
Matthews, D.A. et al. Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science197, 452–455 (1977). ArticleCASPubMed Google Scholar
Schnell, J.R., Dyson, H.J. & Wright, P.E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct.33, 119–140 (2004). ArticleCASPubMed Google Scholar
Couñago, R., Chen, S. & Shamoo, Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol. Cell22, 441–449 (2006). ArticlePubMed Google Scholar
Lipsitch, M., Bergstrom, C.T. & Levin, B.R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl. Acad. Sci. USA97, 1938–1943 (2000). ArticleCASPubMedPubMed Central Google Scholar
Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med.10, S122–S129 (2004). ArticleCASPubMed Google Scholar
Martinez, J.L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev.33, 44–65 (2009). ArticleCASPubMed Google Scholar
Yee, Y.C., Kisslinger, B., Yu, V.L. & Jin, D.J. A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother.38, 133–137 (1996). ArticleCASPubMed Google Scholar
Ruiz, J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother.51, 1109–1117 (2003). ArticleCASPubMed Google Scholar
Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev.65, 232–260 (2001). ArticleCASPubMedPubMed Central Google Scholar
Girgis, H.S., Hottes, A.K. & Tavazoie, S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE4, e5629 (2009). ArticlePubMedPubMed Central Google Scholar
Albert, T.J. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods2, 951–953 (2005). ArticleCASPubMed Google Scholar
Friedman, L., Alder, J.D. & Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother.50, 2137–2145 (2006). ArticleCASPubMedPubMed Central Google Scholar
Barrick, J.E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature461, 1243–1247 (2009). ArticleCASPubMed Google Scholar
Yeh, P.J., Hegreness, M.J., Aiden, A.P. & Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol.7, 460–466 (2009). ArticleCASPubMedPubMed Central Google Scholar
Michel, J.B., Yeh, P.J., Chait, R., Moellering, R.C. Jr. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA105, 14918–14923 (2008). ArticleCASPubMedPubMed Central Google Scholar
Demerec, M. Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc. Natl. Acad. Sci. USA31, 16–24 (1945). ArticleCASPubMedPubMed Central Google Scholar
Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother.52, 11–17 (2003). ArticleCASPubMed Google Scholar
Bull, A.T. The renaissance of continuous culture in the post-genomics age. J. Ind. Microbiol. Biotechnol.37, 993–1021 (2010). ArticleCASPubMed Google Scholar
de Crécy, E. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol.77, 489–496 (2007). ArticlePubMed Google Scholar
Paalme, T., Elken, R., Kahru, A., Vanatalu, K. & Vilu, R. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie van Leeuwenhoek71, 217–230 (1997). ArticleCASPubMed Google Scholar
Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet.38, 489–494 (2006). ArticleCASPubMed Google Scholar
Arjan, J.A. et al. Diminishing returns from mutation supply rate in asexual populations. Science283, 404–406 (1999). ArticleCASPubMed Google Scholar
Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol.178, 306–308 (1996). ArticleCASPubMedPubMed Central Google Scholar
Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M. & Aono, R. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl. Environ. Microbiol.63, 1428–1433 (1997). CASPubMedPubMed Central Google Scholar
Mankin, A.S., Zyrianova, I.M., Kagramanova, V.K. & Garrett, R.A. Introducing mutations into the single-copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc. Natl. Acad. Sci. USA89, 6535–6539 (1992). ArticleCASPubMedPubMed Central Google Scholar
Gerrits, M.M., Berning, M., Van Vliet, A.H., Kuipers, E.J. & Kusters, J.G. Effects of 16S rRNA gene mutations on tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother.47, 2984–2986 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ross, J.I., Eady, E.A., Cove, J.H. & Cunliffe, W.J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother.42, 1702–1705 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ettayebi, M., Prasad, S.M. & Morgan, E.A. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J. Bacteriol.162, 551–557 (1985). CASPubMedPubMed Central Google Scholar
Flensburg, J. & Skold, O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur. J. Biochem.162, 473–476 (1987). ArticleCASPubMed Google Scholar
Ohmae, E., Sasaki, Y. & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem.130, 439–447 (2001). ArticleCASPubMed Google Scholar
Smith, D.R. & Calvo, J.M. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product. Mol. Gen. Genet.187, 72–78 (1982). ArticleCASPubMed Google Scholar
Watson, M., Liu, J.W. & Ollis, D. Directed evolution of trimethoprim resistance in Escherichia coli. FEBS J.274, 2661–2671 (2007). ArticleCASPubMed Google Scholar
Lunzer, M., Miller, S.P., Felsheim, R. & Dean, A.M. The biochemical architecture of an ancient adaptive landscape. Science310, 499–501 (2005). ArticleCASPubMed Google Scholar
de Visser, J.A. & Rozen, D.E. Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics172, 2093–2100 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wichman, H.A., Badgett, M.R., Scott, L.A., Boulianne, C.M. & Bull, J.J. Different trajectories of parallel evolution during viral adaptation. Science285, 422–424 (1999). ArticleCASPubMed Google Scholar
Crandall, K.A., Kelsey, C.R., Imamichi, H., Lane, H.C. & Salzman, N.P. Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol. Biol. Evol.16, 372–382 (1999). ArticleCASPubMed Google Scholar
Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol.8, R232 (2007). ArticlePubMedPubMed Central Google Scholar
Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell139, 707–718 (2009). ArticleCASPubMedPubMed Central Google Scholar