Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution (original) (raw)
Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J. & Eichler, E.E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res.11, 1005–1017 (2001). ArticleCAS Google Scholar
She, X. et al. A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res.16, 576–583 (2006). ArticleCAS Google Scholar
Eichler, E.E. et al. Interchromosomal duplications of the adrenoleukodystrophy locus: a phenomenon of pericentromeric plasticity. Hum. Mol. Genet.6, 991–1002 (1997). ArticleCAS Google Scholar
Orti, R. et al. Conservation of pericentromeric duplications of a 200-kb part of the human 21q22.1 region in primates. Cytogenet. Cell Genet.83, 262–265 (1998). ArticleCAS Google Scholar
Jackson, M.S. et al. Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications, and unstable sequences with homologies to telomeric and other centromeric locations. Hum. Mol. Genet.8, 205–215 (1999). ArticleCAS Google Scholar
Horvath, J., Schwartz, S. & Eichler, E. The mosaic structure of a 2p11 pericentromeric segment: a strategy for characterizing complex regions of the human genome. Genome Res.10, 839–852 (2000). ArticleCAS Google Scholar
Horvath, J. et al. Molecular structure and evolution of an alpha/non-alpha satellite junction at 16p11. Hum. Mol. Genet.9, 113–123 (2000). ArticleCAS Google Scholar
Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature413, 514–519 (2001). ArticleCAS Google Scholar
Stankiewicz, P. & Lupski, J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet.18, 74–82 (2002). ArticleCAS Google Scholar
Horvath, J.E. et al. Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Res.15, 914–927 (2005). ArticleCAS Google Scholar
Locke, D.P. et al. Molecular evolution of the human chromosome 15 pericentromeric region. Cytogenet. Genome Res.108, 73–82 (2005). ArticleCAS Google Scholar
Linardopoulou, E.V. et al. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature437, 94–100 (2005). ArticleCAS Google Scholar
Bailey, J.A. et al. Recent segmental duplications in the human genome. Science297, 1003–1007 (2002). ArticleCAS Google Scholar
She, X. et al. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature431, 927–930 (2004). ArticleCAS Google Scholar
Pevzner, P.A., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly. Genome Res.14, 1786–1796 (2004). ArticleCAS Google Scholar
Gibbs, R.A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science316, 222–234 (2007). ArticleCAS Google Scholar
Waterston, R. et al. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002). ArticleCAS Google Scholar
Gibbs, R.A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature428, 493–521 (2004). ArticleCAS Google Scholar
Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature438, 803–819 (2005). ArticleCAS Google Scholar
Eichler, E.E. et al. Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum. Mol. Genet.5, 899–912 (1996). ArticleCAS Google Scholar
Regnier, V. et al. Emergence and scattering of multiple neurofibromatosis (NF1)-related sequences during hominoid evolution suggest a process of pericentromeric interchromosomal transposition. Hum. Mol. Genet.6, 9–16 (1997). ArticleCAS Google Scholar
Potier, M. et al. Two sequence-ready contigs spanning the two copies of a 200-kb duplication on human 21q: partial sequence and polymorphisms. Genomics51, 417–426 (1998). ArticleCAS Google Scholar
She, X. et al. The structure and evolution of centromeric transition regions within the human genome. Nature430, 857–864 (2004). ArticleCAS Google Scholar
Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA100, 11484–11489 (2003). ArticleCAS Google Scholar
Eichler, E.E. et al. Divergent origins and concerted expansion of two segmental duplications on chromosome 16. J. Hered.92, 462–468 (2001). ArticleCAS Google Scholar
Jackson, M.S. et al. Evidence for widespread reticulate evolution within human duplicons. Am. J. Hum. Genet.77, 824–840 (2005). ArticleCAS Google Scholar
Hurles, M.E. Gene conversion homogenizes the CMT1A paralogous repeats. BMC Genomics2, 11 (2001). ArticleCAS Google Scholar
Pavlicek, A., House, R., Gentles, A.J., Jurka, J. & Morrow, B.E. Traffic of genetic information between segmental duplications flanking the typical 22q11.2 deletion in velo-cardio-facial syndrome/DiGeorge syndrome. Genome Res.15, 1487–1495 (2005). ArticleCAS Google Scholar
Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature437, 88–93 (2005). ArticleCAS Google Scholar
Bowers, P.M., Cokus, S.J., Eisenberg, D. & Yeates, T.O. Use of logic relationships to decipher protein network organization. Science306, 2246–2249 (2004). ArticleCAS Google Scholar
Rivera, M.C. & Lake, J.A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature431, 152–155 (2004). ArticleCAS Google Scholar
Lake, J.A. & Rivera, M.C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol.21, 681–690 (2004). ArticleCAS Google Scholar
Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178 (2005). ArticleCAS Google Scholar
Paulding, C.A., Ruvolo, M. & Haber, D.A. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc. Natl. Acad. Sci. USA100, 2507–2511 (2003). ArticleCAS Google Scholar
Vandepoele, K., Van Roy, N., Staes, K., Speleman, F. & van Roy, F. A novel gene family NBPF: intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol.22, 2265–2274 (2005). ArticleCAS Google Scholar
Ciccarelli, F.D. et al. Complex genomic rearrangements lead to novel primate gene function. Genome Res.15, 343–351 (2005). ArticleCAS Google Scholar
Gu, X., Wang, Y. & Gu, J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat. Genet.31, 205–209 (2002). ArticleCAS Google Scholar
Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1155 (2000). ArticleCAS Google Scholar
Horvath, J.E. et al. Using a pericentromeric interspersed repeat to recapitulate the phylogeny and expansion of human centromeric segmental duplications. Mol. Biol. Evol.20, 1463–1479 (2003). ArticleCAS Google Scholar
Johnson, M.E. et al. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc. Natl. Acad. Sci. USA103, 17626–17631 (2006). ArticleCAS Google Scholar
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16, 111–120 (1980). ArticleCAS Google Scholar