Genetic control of rice plant architecture under domestication (original) (raw)

References

  1. Oka, H.I. Origin of Cultivated Rice (Japan Scientific Society Press, Tokyo, 1988).
    Google Scholar
  2. Chang, T.T. in Evolution of Crop Plants 2nd edn. (eds. Smartt, J. & Simmonds, N.W.) Rice: Oryza sativa and Oryza glaberrima (Gramineae-Orzeae) 147–155 (Longman Scientific and Technical, Essex, UK, 1995).
    Google Scholar
  3. Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997).
    Article CAS Google Scholar
  4. Sharma, S.D., Tripathy, S. & Biswal, J. in Rice Breeding and Genetics: Research Priorities and Challenges (ed. Nanda, J.S.) 349–369 (Science Publications, Enfield, New Hampshire, 2000).
    Google Scholar
  5. Kovach, M.J., Sweeney, M.T. & McCouch, S.R. New insights into the history of rice domestication. Trends Genet. 23, 578–587 (2007).
    Article CAS Google Scholar
  6. Vaughan, D.A., Morishima, H. & Kadowaki, K. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6, 139–146 (2003).
    Article CAS Google Scholar
  7. Cheng, C. et al. Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol. Biol. Evol. 20, 67–75 (2003).
    Article CAS Google Scholar
  8. Vitte, C., Ishii, T., Lamy, F., Brar, D. & Panaud, O. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol. Genet. Genomics 272, 504–511 (2004).
    Article CAS Google Scholar
  9. Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).
    Article CAS Google Scholar
  10. Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).
    Article CAS Google Scholar
  11. Sweeney, M.T., Thomson, M.J., Pfeil, B.E. & McCouch, S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18, 283–294 (2006).
    Article CAS Google Scholar
  12. Hao, W., Jin, J., Sun, S.Y., Zhu, M.Z. & Lin, H.X. Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality. J. Plant Physiol. Mol. Biol. 32, 354–362 (2006).
    CAS Google Scholar
  13. Ren, Z.H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141–1146 (2005).
    Article CAS Google Scholar
  14. Li, P.J. et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 17, 402–410 (2007).
    Article CAS Google Scholar
  15. Yu, B. et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891–898 (2007).
    Article CAS Google Scholar
  16. Miller, J., McLachlan, A.D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).
    Article CAS Google Scholar
  17. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 Zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).
    Article CAS Google Scholar
  18. Sakamoto, H. et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136, 2734–2746 (2004).
    Article CAS Google Scholar
  19. Lin, R. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305 (2007).
    Article CAS Google Scholar
  20. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).
    Article CAS Google Scholar
  21. Wang, R.L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).
    Article CAS Google Scholar
  22. Frary, A. et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).
    Article CAS Google Scholar
  23. Liu, J., Van Eck, J., Cong, B. & Tanksley, S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA 99, 13302–13306 (2002).
    Article CAS Google Scholar
  24. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719 (2005).
    Article CAS Google Scholar
  25. Doebley, J.F., Gaut, B.S. & Smith, B.D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).
    Article CAS Google Scholar
  26. Cong, B., Barrero, L.S. & Tanksley, S.D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 40, 800–804 (2008).
    Article CAS Google Scholar
  27. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumeficience and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).
    Article CAS Google Scholar
  28. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
    Article CAS Google Scholar
  29. Coen, E. et al. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322 (1990).
    Article CAS Google Scholar
  30. Li, X. et al. Control of tillering in rice. Nature 422, 618–621 (2003).
    Article CAS Google Scholar

Download references