Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias (original) (raw)
Kannel, W.B., Cupples, A. & D'Agostino, R.B. Sudden death risk in overt coronary heart diseases: the Framingham study. Am. Heart J.113, 799–804 (1987). ArticleCASPubMed Google Scholar
Willich, S.N. et al. Circadian variation in the incidence of sudden cardiac death in the Framingham heart study population. Am. J. Cardiol.60, 801–806 (1987). ArticleCASPubMed Google Scholar
Trial II Investigators Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Engl. J. Med.327, 227–233 (1992).
Jervell, A. & Lange-Nielsen, F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am. Heart J.54, 59–78 (1957). ArticleCASPubMed Google Scholar
Ward, O.C. A new familial cardiac syndrome in children. J. Ir. Med. Assoc.54, 103–106 (1964). CASPubMed Google Scholar
Schwartz, P.J., Periti, M. & Malliani, A. The long QT syndrome. Am. Heart J.109, 378–390 (1975). Article Google Scholar
Moss, A.J. & McDonald, J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N. Engl. J. Med.285, 903–904 (1970). Article Google Scholar
Zipes, D.P. Proarrhythmic effects of antiarrhythmic drugs. Am. J. Cardiol.59, 26E–31E (1987). ArticleCASPubMed Google Scholar
Keating, M.T. et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science252, 704–706 (1991). ArticleCASPubMed Google Scholar
Keating, M.T. et al. Consistent linkage of the long QT syndrome to the Harvey ras-1 locus on chromosome 11. Am. J. Hum. Genet.49, 1335–1339 (1991). CASPubMedPubMed Central Google Scholar
Jiang, C. et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nature Genet.8, 141–147 (1994). ArticleCASPubMed Google Scholar
Schott, J. et al. Mapping of a gene for long QT syndrome to chromosome 4q25–27. Am. J. Hum. Genet.57, 1114–1122 (1995). CASPubMedPubMed Central Google Scholar
Curran, M.E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell80, 795–803. ArticleCASPubMed Google Scholar
Sanguinetti, M.C., Jiang, C., Curran, M.E. & Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the 1Kr potassium channel. Cell81, 299–307 (1995). ArticleCASPubMed Google Scholar
Trudeau, M.C., Warmke, J., Ganetzky, B. & Robertson, G. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science269, 92–95 (1995). ArticleCASPubMed Google Scholar
Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell80, 805–811 (1995). ArticleCASPubMed Google Scholar
Wang, Q. et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet.4, 1603–1607 (1995). ArticleCASPubMed Google Scholar
Wymore, R.S. et al. Genomic organization, nucleotide sequence, biophysical properties, and localization of the voltage-gated K+ channel gene KCN4A/Kv1.4 to mouse chromosome 2/human 11 p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11 p14.3–p15.2 and KCNA1/Kv1.1 to human 12p13. Genomics20, 191–202 (1994). ArticleCASPubMed Google Scholar
Russell, M.W. et al. Localization of Romano-Ward long QT syndrome gene, LQT1, to the interval between tyrosine hydroxylase (TH) and D11S1349 . Am. J. Hum. Genet.57, 503–507 (1995). CASPubMedPubMed Central Google Scholar
Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet.7, 246–339 (1994). ArticleCASPubMed Google Scholar
Tanigami, A. et al. Mapping of 262 DNA markers into 24 intervals on human chromosome 11. Am. J. Hum. Genet.50, 56–64 (1992). CASPubMedPubMed Central Google Scholar
Tokino, T. et al. Isolation and mapping of 62 new RFLP markers on human chromosome 11. Am. J. Hum. Genet.48, 258–268 (1991). CASPubMedPubMed Central Google Scholar
Pongs, O. et al. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J.7, 1087–1095 (1988). ArticleCASPubMedPubMed Central Google Scholar
Wang, Q. & Keating, M.T. Isolation of P1 insert ends by direct sequencing. BioTechniques17, 282–284 (1994). CASPubMed Google Scholar
MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature350, 232–235 (1991). ArticleCASPubMed Google Scholar
MacKinnon, R., Aldrich, R.W. & Lee, A.W. Functional stoichiometry of shaker potassium channel inactivation. Science262, 757–759 (1993). ArticleCASPubMed Google Scholar
Covarrubias, M., Wei, A. & Salkoff, L., shaker, shal, shab, and shaw express independent K+ current systems. Neuron7, 763–773 (1991). ArticleCASPubMed Google Scholar
Schwartz, P. et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation(in the press).
Anderson, M.A. & Gusella, U.K. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro20, 856–858 (1984). ArticleCASPubMed Google Scholar
Lathrop, G.M., Lalouel, J.-M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. Hum. Genet.37, 482–498 (1985). CASPubMedPubMed Central Google Scholar
Green, E.D. & Olson, M.V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA87, 1213–1217 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kwiatowski, T.J., Zoghbi, H.Y., Ledbetter, S.A., Ellison, K.A. & Chinault, A.C. Rapid identification of yeast artificial chromosome clones by matrix pooling and crude lysate PCR. Nucl. Acids Res.17, 7191–7192 (1990). Article Google Scholar
Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic application of an inverse polymerase chain reaction. Genetics120, 621–623 (1988). CASPubMedPubMed Central Google Scholar
Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Nati. Acad. Sci. USA87, 103–107 (1990). ArticleCAS Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual. Second Edition. (Cold Spring Harbor Laboratory Press, New York, 1989). Google Scholar
Burn, T.C., Connors, T.D., Klinger, K.W. & Landes, G.M. Increased exon trapping efficiencies through modifications to the pSPLS splicing vector. Gene161, 183–187 (1995). ArticleCASPubMed Google Scholar
Buckler, A.J. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA88, 4005–4009 (1991). ArticleCASPubMedPubMed Central Google Scholar
Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet.6, 98–104 (1994). ArticleCASPubMed Google Scholar
Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res.19, 1154 (1990). Article Google Scholar