The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice (original) (raw)

References

  1. Hustad, C.M. et al. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140, 255–265 (1995).
    CAS PubMed PubMed Central Google Scholar
  2. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).
    Article CAS PubMed Google Scholar
  3. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 375, 81–83 (1995).
    Article Google Scholar
  4. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Adds Res. 15, 8125–8148 (1987).
    Article CAS Google Scholar
  5. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-Ap, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13, 775–784 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  6. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natal. Acad. Sci. USA 92, 2563–2567 (1995).
    Article CAS Google Scholar
  7. Sudol, M. The WW module competes with the SH3 domain? Trends Biochem. Sci. 21, 161–163 (1996).
    Article CAS PubMed Google Scholar
  8. Daveltov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).
    Google Scholar
  9. Vrieling, H.D., Duhl, M.J., Millar, S.E., Miller, K.A. & Barsh, G.S. Differences in dorsal and ventral pigmentation results from regional expression of the mouse agouti gene. Proc. Natal. Acad. Sci. USA 91, 170–178 (1994).
    Article Google Scholar
  10. Green, M.C. & Schultz, L.D., Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J. Hered. 66, 250–258 (1975).
    Article CAS PubMed Google Scholar
  11. Sidman, C.L., Shultz, L.D. & Unanue, E.R. The mouse mutant “motheaten.” I. Development of lymphocyte populations. J. Immunol. 121, 2392–2398 (1978).
    CAS PubMed Google Scholar
  12. Ward, J.M. Pulmonary pathology of the motheaten mouse. Vet. Pathol. 15, 170–178 (1978).
    Article CAS PubMed Google Scholar
  13. Shultz, L.D. et al. Mutations at the murine motheaten locus are within the haematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).
    Article CAS PubMed Google Scholar
  14. Tsui, H.W., Siminovitch, K.A., De Souza, L., & Tsui, F.W.L. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet. 4, 124–129 (1993).
    Article CAS PubMed Google Scholar
  15. Jiao, H. et al. Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: Detection of potential HCP substrates in GM-CSF signal transduction. Exp. Haematol. 25, 592–600 (1997).
    CAS Google Scholar
  16. Piao, X., Paulson, R., van der Geer, P., Pawson, T. & Bernstein, A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc. Natal. Acad. Sci. USA 93, 14665–14669 (1996).
    Article CAS Google Scholar
  17. David, M., Chen, H.E., Goelz, S., Larner, A.C. & Neel, B.G. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 15, 7050–7058 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  18. Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).
    Article CAS PubMed Google Scholar
  19. Miyazawa, K. et al. Ligand-dependent polyubiquitination of c-fc/tgene product: a possible mechanism of receptor down modulation in M107e cells. Blood 83, 137–145 (1994).
    CAS PubMed Google Scholar
  20. Mori, S., Heldin, C.-H. & Claesson-Welsh, L. Ligand-induced polyubiquitination of the platelet-derived growth factor (3-receptor plays a negative regulatory role in its mitogenic signaling. J. Biol. Chem. 268, 577–583 (1992).
    Google Scholar
  21. Mori, S., Claesson-Welsh, L., Okuyama, Y. & Saito, Y. Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem. Biophys. Rec. Comm. 213, 32–39 (1995).
    Article CAS Google Scholar
  22. Mori, S., Tanaka, K., Omura, S. & Saito, Y. Degradation process of ligand-stimulated platelet-derived growth factor receptor involves ubiquitin-proteasome proteolytic pathway. J. Biol. Chem. 270, 29447–29452 (1995).
    Article CAS PubMed Google Scholar
  23. Cattanach, B.M., Lyon, M.F., Peters, J. & Searle, A.G. Agouti locus mutations at Harwell. Mouse News Lett. 77, 123–125 (1987).
    Google Scholar
  24. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).
    Article CAS PubMed Google Scholar
  25. Perry, W.L., Hustad, C.M., Swing, D.A., Jenkins, N.A. & Copeland, N.G. A transgenic mouse assay for agouti protein activity. Genetics 140, 267–274 (1995).
    CAS PubMed PubMed Central Google Scholar

Download references