A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase (original) (raw)
References
Yim, M.B. et al. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natal. Acad. Sci. USA93, 5709–5714 (1996). ArticleCAS Google Scholar
Wallace, D.C. Mitochondrial DMA Mutations and Bioenergetic Defects in Aging and Degenerative Diseases. in Molecular and Genetic Basis of Neurologic Disease (eds Rosenburg, D. N., Prusiner, S.B., DiMauro, S. & Barchi, R.L.) 237–269 (Butterworth Heinemann, Boston, 1996).
Szabo, C. Physiological and Pathophysiological Roles of Nitric Oxide in the Central Nervous System. Brain Research Bulletin41, 131–141 (1996). ArticleCAS Google Scholar
Schulz, J.B. & Seal, M.F. Neuroprotective effects of free radical scavengers and energy repletion in animal models of neurodegenerative disease. Ann. N.Y.Acad. Sci.765, 100–118 (1995). ArticleCAS Google Scholar
Simonian, N.A. & Coyle, J.T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol.36, 83106 (1996). ArticleCAS Google Scholar
Turrens, J.F. & Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J.191, 421–427 (1980). ArticleCAS Google Scholar
Turrens, J.F., Alexandre, A. & Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys.237, 408–414 (1985). ArticleCAS Google Scholar
Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet.11, 376–381 (1995). ArticleCAS Google Scholar
Day, B.J., Shawen, S., Liochev, S.I. & Crapo, J.D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J. Pharmacol. Exp. Ther.275, 1227–1232 (1995). CASPubMed Google Scholar
Day, B.J. & Crapo, J.D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicol. Appl. Pharmacol.140, 94–100 (1996). ArticleCAS Google Scholar
Szabo, C., Day, B.J. & Salzman, A.L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett.381, 82–86 (1996). ArticleCAS Google Scholar
Zingarelli, B., Day, B.J., Crapo, J.D., Salzman, A.L. & Szabo, C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock, Br. J. Pharmacol.120, 259–267 (1997). ArticleCAS Google Scholar
Lebovitz, R.M. et al Neurodegeneration, myocardial injury, and perinatal death in mitochondria! superoxide dismutase-deficient mice. Proc. Natal. Acad. Sci. USA93, 9782–9787 (1996). ArticleCAS Google Scholar
Hirano, A., Zimmerman, H.M. & Levine, S. Intramyelinic and extracellular spaces in triethyltin intoxication. J. Neuropathol. Exp. Neurol.27, 571−580 (1968). ArticleCAS Google Scholar
Kimura, S., Kobayashi, T. & Amemiya, F. Myelin splitting in the spongy lesion in Leigh encephalopathy. Pediatr. Neurol.7, 56–58 (1991). ArticleCAS Google Scholar
Adachi, M., Wallace, B.J. & Volk, B.W. Ultramicroscopic and histochemical studies of spongy degeneration (van Bogaert and Bertrand type). J. Neuropathol. Exp.Neurol.26, 164–165 (1967). CAS Google Scholar
Melov, S., Hinerfeld, D., Esposito, L. & Wallace, D.C. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangments with age. Nucleic Acids Res.25, 974–982 (1997). ArticleCAS Google Scholar
Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron14, 1105–1116 (1995). ArticleCAS Google Scholar
Beal, M.F., ging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol.38, 357–366 (1995). ArticleCAS Google Scholar
Halliwell, B. Reactive oxygen species and the central nervous system. J Neurochem.59, 1609−1623 (1992). ArticleCAS Google Scholar
Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of molecular shrapnel for Alzheimers disease. Proc. West. Pharmacol. Soc.38, 113–120 (1995). CASPubMed Google Scholar
Mattson, M.P. Calcium and neuronal injury in Alzheimers disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann. N.Y Acad. Sci.747, 50–76 (1994). ArticleCAS Google Scholar
Bancroft, J.D. & Stevens, A. Theory and Practice of Histological Techniques (Churchill Livingstone, New York, 1996).