A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase (original) (raw)

References

  1. Yim, M.B. et al. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natal. Acad. Sci. USA 93, 5709–5714 (1996).
    Article CAS Google Scholar
  2. Wallace, D.C. Mitochondrial DMA Mutations and Bioenergetic Defects in Aging and Degenerative Diseases. in Molecular and Genetic Basis of Neurologic Disease (eds Rosenburg, D. N., Prusiner, S.B., DiMauro, S. & Barchi, R.L.) 237–269 (Butterworth Heinemann, Boston, 1996).
  3. Szabo, C. Physiological and Pathophysiological Roles of Nitric Oxide in the Central Nervous System. Brain Research Bulletin 41, 131–141 (1996).
    Article CAS Google Scholar
  4. Schulz, J.B. & Seal, M.F. Neuroprotective effects of free radical scavengers and energy repletion in animal models of neurodegenerative disease. Ann. N.Y.Acad. Sci. 765, 100–118 (1995).
    Article CAS Google Scholar
  5. Simonian, N.A. & Coyle, J.T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83106 (1996).
    Article CAS Google Scholar
  6. Turrens, J.F. & Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427 (1980).
    Article CAS Google Scholar
  7. Turrens, J.F., Alexandre, A. & Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408–414 (1985).
    Article CAS Google Scholar
  8. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11, 376–381 (1995).
    Article CAS Google Scholar
  9. Day, B.J., Shawen, S., Liochev, S.I. & Crapo, J.D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J. Pharmacol. Exp. Ther. 275, 1227–1232 (1995).
    CAS PubMed Google Scholar
  10. Day, B.J. & Crapo, J.D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicol. Appl. Pharmacol. 140, 94–100 (1996).
    Article CAS Google Scholar
  11. Szabo, C., Day, B.J. & Salzman, A.L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381, 82–86 (1996).
    Article CAS Google Scholar
  12. Zingarelli, B., Day, B.J., Crapo, J.D., Salzman, A.L. & Szabo, C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock, Br. J. Pharmacol. 120, 259–267 (1997).
    Article CAS Google Scholar
  13. Lebovitz, R.M. et al Neurodegeneration, myocardial injury, and perinatal death in mitochondria! superoxide dismutase-deficient mice. Proc. Natal. Acad. Sci. USA 93, 9782–9787 (1996).
    Article CAS Google Scholar
  14. Hirano, A., Zimmerman, H.M. & Levine, S. Intramyelinic and extracellular spaces in triethyltin intoxication. J. Neuropathol. Exp. Neurol. 27, 571−580 (1968).
    Article CAS Google Scholar
  15. Kimura, S., Kobayashi, T. & Amemiya, F. Myelin splitting in the spongy lesion in Leigh encephalopathy. Pediatr. Neurol. 7, 56–58 (1991).
    Article CAS Google Scholar
  16. Adachi, M., Wallace, B.J. & Volk, B.W. Ultramicroscopic and histochemical studies of spongy degeneration (van Bogaert and Bertrand type). J. Neuropathol. Exp. Neurol. 26, 164–165 (1967).
    CAS Google Scholar
  17. Melov, S., Hinerfeld, D., Esposito, L. & Wallace, D.C. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangments with age. Nucleic Acids Res. 25, 974–982 (1997).
    Article CAS Google Scholar
  18. Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).
    Article CAS Google Scholar
  19. Beal, M.F., ging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366 (1995).
    Article CAS Google Scholar
  20. Halliwell, B. Reactive oxygen species and the central nervous system. J Neurochem. 59, 1609−1623 (1992).
    Article CAS Google Scholar
  21. Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of molecular shrapnel for Alzheimers disease. Proc. West. Pharmacol. Soc. 38, 113–120 (1995).
    CAS PubMed Google Scholar
  22. Mattson, M.P. Calcium and neuronal injury in Alzheimers disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann. N.Y Acad. Sci. 747, 50–76 (1994).
    Article CAS Google Scholar
  23. Bancroft, J.D. & Stevens, A. Theory and Practice of Histological Techniques (Churchill Livingstone, New York, 1996).

Download references