A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element (original) (raw)
References
Chance, P.F. et al. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum. Mol. Genet.3, 223–228 (1994). ArticleCAS Google Scholar
Lupski, J.R., Garcia, C.A., Parry, G.J. & Patel, P.L., Charcot-Marie-Tooth polyneuropathy syndrome: clinical electrophysiologic and genetic aspects. In Current Neurology (ed. Appel, S.) 1–25 (Mosby Yearbook, Chicago, 1991). Google Scholar
Kaku, D.A., Parry, G.J., Malamut, R., Lupski, J.R. & Garcia, C.A. Nerve conduction studies in Charcot-Marie-Tooth polyneuropathy associated with a segmental duplication of chromosome 17. Neurology43, 1806–1808 (1993). ArticleCAS Google Scholar
De Jong, J.G.Y. Over families met hereditaire dispositie tot het optreden van neuritiden gecorreleered met migraine. Psychiat. Neurol. Bull.50, 60–76 (1947). CAS Google Scholar
Davis, D.M. Recurrent peripheral-nerve palsies in a family. Lancet2, 266–268 (1954). Article Google Scholar
Lupski, J.R., Chance, R.F. & Garcia, C.A. Inherited primary peripheral neuropathies: molecular genetics and clinical implications of CMT1A and HNPP. JAMA17, 2326–2330 (1993). Article Google Scholar
Roa, B.B. & Lupski, J.R. Molecular genetics of Charcot-Marie-Tooth neuropathy. In Advances in Human Genetics (eds Harris, H. & Hirschhorn, K.) 117–152 (Plenum Press, New York, 1994). Chapter Google Scholar
Lupski, J.R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1 A. Cell.66, 219–232 (1991). ArticleCAS Google Scholar
Raeymaekers, R. et al. Duplication in chromosome 17p11.2 in Charcot-Marie- Tooth neuropathy type 1a (CMT1a). Neuromusc. Diosord.1, 93–97 (1991). ArticleCAS Google Scholar
Raeymaekers, R. et al. Estimation of the size of the chromosome 17p11.2 duplication in Charcot-Marie-Tooth neuropathy type 1a (CMTIa). J. Med. Genet.29, 5–11 (1992). ArticleCAS Google Scholar
Ionasescu, V.V., Ionasescu, R., & Searby, C. Screening of dominantly inherited Charcot-Marie-Tooth neuropathies. Muscle Nerve16, 1232–1238 (1993). ArticleCAS Google Scholar
Lupski, J.R., Pentao, L., Williams, L.L. & Patel, P.I. Stable inheritance of the CMT1A DNA duplication in two patients with CMT1 and NF1. Am. J. Med. Genet.45, 92–96 (1993). ArticleCAS Google Scholar
Wise, C.A. et al. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication. Am. J. Hum. Genet.53, 853–863 (1993). CASPubMedPubMed Central Google Scholar
Nelis, E. et al. Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 (CMT1) and hereditary neuropathy with liability to pressure palsies (HNPP): a European collaborative study. Eur. J. Hum. Genet. (in the press).
Pentao, L., Wise, C.A., Chinault, A.C., Patel, P. & Lupski, J.R. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nature Genet.2, 292–300 (1992). ArticleCAS Google Scholar
McKusick, V.A. Mendelian Inheritance in Man (The Johns Hopkins University Press, Baltimore, 1994). Google Scholar
Hoogendijk, J.E. et al. De-novo mutation in hereditary motor and sensory neuropathy type 1. Lancet.339, 1081–1082 (1992). ArticleCAS Google Scholar
Chance, P.P. et al. DNA deletion associated with hereditary neuropathy with I lability to pressure palsies. Cell72, 143–151 (1993). ArticleCAS Google Scholar
Lorenzetti, D. et al. A 1.5 Mb deletion in 17p11.2–p12 is frequently observed in Italian families with hereditary neuropathy with liability to pressure palsies. Am. J. Hum. Genet.56, 91–98 (1995). CASPubMedPubMed Central Google Scholar
Roa, B., Ananth, U., Garcia, C.A. & Lupski, J.R., Diagnosis of CMTIAand HNPP. Lab. Med. Int.12, 22–24 (1995). Google Scholar
Matsunami, N. et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1 A. Nature Genet.1, 176–179 (1992). ArticleCAS Google Scholar
Patel, P. et al. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nature Genet.1, 159–165 (1992). ArticleCAS Google Scholar
Timmerman, V. et al. The peripheral myelin protein gene PMP22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nature Genet.1, 171–175 (1992). ArticleCAS Google Scholar
Valentijn, L.J. et al. The peripheral myelin gene PMP22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nature Genet.1, 166–170 (1992). ArticleCAS Google Scholar
Patel, P.I. & Lupski, J.R. Charcot-Marie-Tooth disease: a new paradigm for the mechanism of inherited disease. Trends Genet.10, 128–133 (1994). ArticleCAS Google Scholar
Palau, F. et al. Origin of the de novo duplication in Charcot-Marie-Tooth disease type 1A: unequal nonsister chnomatid exchange during spermatogenesis. Hum. Mol. Genet.2, 2031–2035 (1993). ArticleCAS Google Scholar
Hertz, J.M., Barglum, A.D., Brandt, C.A., Flint, T. & Bisgaard, C. Charcot-Marie-Tooth disease type 1A: the parental origin of a de novo 17p11. 2–p12 duplication. Clinical Genet.48, 291–294 (1994). Google Scholar
LeGuern, E. et al. Constant rearrangement of the CMT1A-REP sequences in HNPP patients with a deletion in chromosome 17p11.2: A study of 30 unrelated cases. Hum. Mol. Genet.4, 1673–1674 (1995). ArticleCAS Google Scholar
Timmerman, V. et al. Molecular genetic analysis of the 17p11.2 region in patients with hereditary neuropathy with liability to pressure palsies (HNPP). Hum. Genet.97, 26–34 (1996). ArticleCAS Google Scholar
Kiyosawa, H., Lensch, M.W. & Chance, R.F. Analysis of the CMT1A-REP repeat: mapping crossover breakpoints in CMT1A and HNPP. Hum. Mol. Genet.4, 2327–2334 (1995). ArticleCAS Google Scholar
Roa, B. et al. Evidence for a recessive PMP22 point mutation in Charcot-Marie-Tooth disease type 1 A. Nature Genet.5, 189–194 (1993). ArticleCAS Google Scholar
Andersson, B. et al. Adaptor-based uracil DNA glycosylase cloning simplifies shotgun library construction for large-scale sequencing. Anal. Biochem.218, 300–308 (1994). ArticleCAS Google Scholar
Devereux, J., Haeberli, R. & Smithies, o. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res.12, 387–395 (1984). ArticleCAS Google Scholar
Smit, A.F.A., TÓth, G., Riggs, A.D. & Jurka, J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol.246, 401–417 (1995). ArticleCAS Google Scholar
Jurka, J., Klonowski, R., Dagman, V. & Pelton, P. CENSOR — a program for identification and elimination of repetitive elements from DNA sequences. Comp. Cnem. (in the press)
Jurka, J. Novel families of intespersed repetitive elements from the human genome. Nucl. Acids Res.18, 137–141 (1990). ArticleCAS Google Scholar
Metzenberg, A.B., Wurzer, G., Huisman, T.H.J. & Smithies, O. Homology requirements for unequal crossing over in humans. Genetics.128, 143–161 (1991). CASPubMedPubMed Central Google Scholar
Uberbacher, E.G. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA88, 11261–11265 (1991). ArticleCAS Google Scholar
Worley, K.C., Wiese, B.A. & Smith, R.A. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res.5, 173–184 (1995). ArticleCAS Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCAS Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res.22, 4673–4680 (1994). ArticleCAS Google Scholar
Robertson, H.M. The mariner transposable element is widespread in insects. Nature362, 241–245 (1993). ArticleCAS Google Scholar
Smit, A.F.A. & Riggs, A.D. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA. (in the press)
Oosumi, T., Belknap, W.R. & Garlick, B. Mariner transposons in humans. Nature378, 672 (1995). ArticleCAS Google Scholar
Lupski, J.R., Roth, J.R. & Weinstock, G.M. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Hum. Genet.58, 21–27 (1996). CASPubMedPubMed Central Google Scholar
Yen, R.H. et al. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell61, 603–610 (1990). ArticleCAS Google Scholar
Ballabio, A., Bardoni, B., Guioli, S., Easier, E. & Camerino, G. Two families of low-copy-number repeats are interspersed on Xp22.3: Implications for the high frequency of deletions in this region. Genomics.8, 263–270 (1990). ArticleCAS Google Scholar
Li, X.-M., Yen, R.H. & Shapiro, L. Characterization of a low copy repetitive element S232 involved in the generation of frequenct deletions of the distal short arm of the human X chromosome. Nucl. Acids Res.20, 1117–1122 (1992). ArticleCAS Google Scholar
Wahls, W.R., Wallace, L.J. & Moore, R.D. Hypervariable minisatellite DNA is a hotspot for homologus recombination in human cells. Cell.60, 95–103 (1990). ArticleCAS Google Scholar
Lakich, D., Kazazian, H.H. Jr., Antonarakis, S.E. & Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nature Genet.5, 236–241 (1993). ArticleCAS Google Scholar
Smit, A.F.A. Identification of a new, abundant superfamily of mammalian LTR- transposons. Nucl. Acids Res.21, 1863–1872 (1993). ArticleCAS Google Scholar
Jacobson, J.W., Medhora, M.M. & Hartl, D.L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA83, 8684–8688 (1986). ArticleCAS Google Scholar
Robertson, H.M. & MacLeod, E.G. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect. Mol. Biol.2, 125–139 (1993). ArticleCAS Google Scholar
McCarron, M., Duttaroy, A., Doughty, G. & Chovnick, A. Drosophila P element transposase induces male recombination addititvely and without a requirement for P element excision or insertion. Genetics.136, 1013–1023 (1994). CASPubMedPubMed Central Google Scholar
Lidholm, D.-A., Lohe, A.R. & Hartl, D.L. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics.134, 859–868 (1993). Google Scholar
Garza, D., Medhora, M., Koga, A. & Hartl, D.L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics.128, 303–310 (1991). CASPubMedPubMed Central Google Scholar
Maruyama, K. & Hartl, D.L. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J. Mol. Evol.33, 514–524 (1991). ArticleCAS Google Scholar
Capy, P., David, J.R. & Hartl, D.L. Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetics86, 37–46 (1992). CAS Google Scholar
Lohe, A.R., Moriyama, E.N., Lindholm, D.-A. & Hartl, D.L. Horizontal transmission, vertical inactivation, and stochastic loss of _mariner_-like transposable elements. Mol. Biol. Evol.12, 62–72 (1995). ArticleCAS Google Scholar
Lohe, A.R., Lindholm, D.-A. & Hartl, D.L. Genotypic effects, maternal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genomics.140, 183–192 (1995). CAS Google Scholar
Reisecker, F. et al. A sporadic form of hereditary neuropathy with liability to pressure palsies: clinical, electrodiagnostic, and molecular genetic findings. Neurology44, 753–755 (1994). ArticleCAS Google Scholar
Rossiter, J.R. et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet.3, 1035–1039 (1994). ArticleCAS Google Scholar
Kallioniemi, O.-R. et al. Physical mapping of chromosome 17 cosmids by fluorescence in situ hybridization and digital image analysis. Genomics20, 125–128 (1994). ArticleCAS Google Scholar
Sambrook, J., Fritsch, E. & Maniatis, T. T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, 1989). Google Scholar
Muzny, D.M., Richards, S., Shen, Y. & Gibbs, R.A. PCR based strategies for gap closure in large-scale sequencing projects. In Automated DNA Sequencing and Analysis (ed. Adams, M.A.) 182–190 (Academic Press, London, 1994). Chapter Google Scholar